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PREAMBLE.

It is only very slowly, through the centuries, that the notion of the resistance of a fluid
to the motion of a solid body has been developed. This notion is intimately associated with
the concepts which we gain from mechanical phenomena. In the aurora of the first gleams
which pierced the darkness of the human mind in the domain of the concepts of motion, fluid
resistance was not ditTerentiatedfrom motion. Thus &istotIe 1 considered in principle –not
willing to admit the possibility of a vacuum- that the r&stance of a fluid was inseparable
from the phenomena of motion. It is this point of view which paralyzes, so to say, completely
his attempts to form a conception of the phenomena of motion, the exposition of which by
him was, it must be added, very hazy. Through antiquity to the Middle Ages, dynamhxd
phenomena were dawning, but with a very confused mieundemtanding. Leonardo de Vimci
seems to have thought much about the motion of bodies under terrestrialconditions. It is
without any doubt that he made numerous and remarkable attempts at mechanical flight.
But, in his dynamical concepts, he does not seem to have clearly separated the phenomena of
motion from the phenomena of the resistance of fluids. Thus he used the confused conception
of the impetus which ought b be communicated to a body when the same is set in motion,
and which ought to dissipate itself progressively to cause the body to stop. But by the use of
the conception of dissipation of the impetus, he even arrived at the happy conclusion of the
impossibility of perpetuwn mobile. It is Galileo’ who finally has a full conception of the mattial
nature of the gases and of the iniluence the same have on the motion of bodies--an influence
which he lmew to decrease with the velocity. This is why Gdiko, in his celebrated experi-
ments on falling bodies, recognized the necessity of making them at low velocities. Low veloci-
ties tit made possibIe the quantitative observations, and secondly diminished SU the re.4st-
ance, for the decreasing of which all possible measur= were taken. So it is that Galileo first
came tQ the modern conception of dynamical phenomena..

To d~engage the law of the motion of bodies, considering the latter as moving in wcuo
and without any kind of r@st.rmce, and to look on all other effects+,such as friction or mediunt-
resistance, as additional effects, this was the conception which tallowedthe establkhrnent of
dynamics. This conceptional sorting of questions in the complex problem of motion must be
considered as one of the greatest scientific conqueds. On our planet the motion of bodks
always tdms place in a fluid. The phenomena of r.ot.ion, taken as a whole, is so complex that
it is inextricable for the human mind. A very large conceptional effort had to be developed to
rise to the abstraction of the phenomena of motion, cleared from the influence of the immediata
medium. But once this big step made, we have the magnificent picture of the powerful dynami-
cal laws, of which we have seen the development; the questions of friction and fluid resistance
being considered as special separate questions, whose complexity is enough h make them subjects
—
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of special branches of science. We understand now why all the first dynamical investigations,
until recent times, were almost exclusively made on problems wherain the influence of the
medium could be neglected. It is for this last reason that the advance of c&&al mechaniw
was developed long before we began to understand the laws of the motion of bodies under terrcsticd
conditions. It is undoubtedly true that it is only with the biith of aviation that profound
studies of the motion of bodies in rea~juids were startad and that the light began to penetrate
through the complex and delicate phenomena of fluid resistmce, which phenomena have, for
a long time, veiled from our eyes the laws of dynamics but which have now given us the con-
quest of the aerial ocetm.

Actually we are only taking the first step; in the conception of the problems of fluid ratance.
The former status of these questions consisted more in the comparison of fluids to some mechani-
cal system, more or less similar b fluids, than in the study of the red fluids with their real prop-
erties. Thus, Newton likened fluids to a system of elastic particles whose impact on the solid
body produced the fluid rmi.stance. Euler I in his research on fluid resisttmce, likened fluids
to a continuous homogeneous frictionless medium and calculated the fluid resistance by aid of
the general equations which he built up for that kind of medium. He was brought to the con-
clmione, very far from reality, that a body moving in a fluid meets no resistance to ib motion.
This conclusion is a consequence of the assumption of a continuous and noncyclic flow around
the body. Recently Kutta has shown that, in the general case of the continuous flow of a
perfect fluid around the body, the circulation around the contour embracing the body can have
a tits value, and in such a case the fluid resistance has a tits v-due but is perpendicular to
the general stream veIocity. Thus, in a perfect fluid only the power corresponding to the
resuItant pressure on the surface of the body is necessarily equal to zero, but the resultant
pressure can have a finite value. We will later consider Kntta’s conceptions. Hebnholtz is
the fit to have made a serious attempt to bring the foundation of hydrodynamics into more
close agreement with reality; and his work in that sense is of great importance. He showed
the necessity for the consideration of ~ortex motion and indicated the possibility of the fomna-
tion of surfaces of discontinuity in fluid motion.

This Iast idea of surfaces of discontinuity was used by Kirchhoff 2 and by Lord Rayleigh S
for the calculation of fluid resistsmce in some simple cases, which method wae recently
largely developed by G. Greenhill 4 II. Levy’ and others. The flow which in reality is establ-
ished seems only rarply tQ be of the kind assumed by Kirchhoff and Lard Rayleigh, so that in
general the experimentally measured fluid rwistance does not correspond to that calculated by
the Kirchhoff and Lord Rayleigh method, a fact im which already William Thomson 0 Oh-d
Kelvin) has drawn attention. The way in which viscosity has been considered untiI now
does not give a satisfactory solution of the problem of fluid resistance, either. The calculation
of fluid resistance by the equations of motion of a viscous fluid in the final form given them by
Stokes 7seems to agree with experiment only for very small velocitiw. It is only the develop-
ment of aviation that has given a new powerful impulse to aerodpamics, and has brought with
it the necessity of a conception of fluid resistance closer to reality. Mmy quite new ideas and
concepts have thus been progressively devdoped.

In 1902 TV.M. Kutta’ forrdated, fit for a particular case and soon after generalized for
the general case, an important theorem which gh- tie relation betw- b fltid tibce
and the flow around a body which encounters that resistance. This theorem was established
by its author for the case of perfect fluids. In that case. thi9 theorem tslls us that the Iift of
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the body is equal to the product of the density, velocity of the stream at infinity, and circu-
lation around a contour surrounding the body, but for the drag it gives the value zero. To cal-
culata the lift by this theorem, it is necawmry h know the flow around the body. Kutta
ass~os that this flow is a compound forward and cyclic motion of the fluid; but this is only
an assumption, without sufEcient foundation. The Kutta theorem, undershod as just stated,
was applied with many developments to numerous cases by Joukowski I and Tchapliguino.
The results of all these calculations do notfulIy agree with experiment. I have submitted the
Kutta theorem to critical examination 2 and have showed that this theorem must not bo under-
stood as giving the solution of the problem of fluid resiatauce, becauso it leaves open the ques-
tion of the flow around the body and onIy gives thcfrelation betwwm flow and fluid resist.ancc.

In recent years, I&man 8 has called attention to the fact that the flow around a body
having a rectilinear and uniform motion of translation in a fluid very often ccmsistaof a system
of vortices which are fornmd behind the body, and has shown the relation which mustmxist
between the momentum of these vortices and the fluid resistance.’

The works of Karman are probably the first to indicate the necessity of tho determination
of the type of flow which in reality takes pl~ce around a body in order to bo able to calculato
its fluid resistance, a question to which not enough attention wae paid before. And what is
particularly important, the type of flow which most generally mtablishes itself is not necessarily
one of the types which were presupposed by all the foregoing theories. The flow around a

body immersed in a fluid is not necessarily continuous as it was supposed by Euler; it ia not
generally characterized by a systum of surfaces of discontinuity either, as was assumed by
Kirchhoff and Lord Ra$eigh, which surfacw of discontinuity must be considered m ahnost
unstable, the viscosity dlsturbing them; but more often the flow is characterized by a system of
vorticw as shown by Karman.

Nevertheless, the systematical study of the different kinds of flow around solid bodies
which are compatible with the general equation of hydrodynamics is of the highest value. It is
of tho geratad imporhmce to disengage all the types of flow which me possible for fluids because
only under such conditions can we reach the complete solution of the great fluid resistance
problem. Generally speaking, all kinds of flow satisfying the equations of hydrodynamics are
virtually possible under special conditions. Particular attention must, however, be paid to
the question of tiding out the exact conditions under which each kind of flow can take place.
In many cases of flow of air or water the types of flow chaxactmized by vortices in quincunx
seem to be most usually obtained. This is on account of the need of stability, and the cuu-
ditions of energy dissipation inside those fluids. If we look over the historical developmcmt
of hydrodynamics it is the progressive discovery of the propertim of the difTerenttypca of flow
that we see before us.

In the development of modern’ hydrodynamics the questiou of ‘the conditions which fix
the type of flow established under given conditions was Ieft nearly without any examination.
Exactly speaking, what did the classical hydrodynamics give us in order ta determine the flow
in the case of steady motion? Of the four equations of the motion of an incompressible fluid
which forms the foundation of classical hydrodynamics, three give the relation between the
distribution of the velocities and the pressures ‘—it is these which express the theorem of
momentum in its application to a fluid particle—and only one, the equation of continuity
determines the flow. The question of finding the flow around a body as defined by the equa-
tion of continuity is a problem of finding a function which wrifk the Laplaco equation and
satisfies the boundary conditions, It must be romembmod, however, that the equation of
continuity is only a necessary condition for continuity tmd is not at all sufficient. As Helm-
holtz has first remarked, the discontinuity of the tangential components of the velocity in

1seal{Aerodynamiqndtby N. Jouko~M. Psti, 1916.
,.. . . . -.%. .v—:—

~WN~Iat thecmIofthh pamphlet.
#VC~. llN~&~ y~ dm~~gli~h~ G@~~ft dm\~wti ~~~t~n.~1 1911.U~y~he zd~~~!~ 1912.

Seaalsothe abov~mentfontiAercdynamfque,by N, JoukowsldandNoteIV at the endofthfapamphlet.
~b the fO~w@ the COM@OIWofKerm8nwfIlbe axtaudwilto the eezofoiL
*Think partknklg wellmm whenWeUSEthe equattor.wOfMd motionInnBt+malcurvilinearcoordJn&u % NotaII.



AN INTRODUCTIONTO THE LAWSOF AIR RESISTANCEOF AEROFOILS. 93

regard to some surfaces is compatible with the equation of hydrodynamics, so that when a flow,
satisfying the equation of continuity is found, it must still be verified that such a flow is vir-
tually possible. This is probably one of the most important questions in the problem of fluid
resistance. I must finally add that in some cases the continuous flow of a fluid seems tQ be
practically impossible.

I will give m example. To follow more easily the motion of a fluid, let us divide its con-
tinuous volume by a system of triorthogonel surfaces which accompany the fluid in its motion,
so that we have no flow through these surfaces. Ccmtinuous motion will mean that each
fluid element will alwa~ remain in contact with the 14 elements which are in touch w-ith it
at any moment; that all the elements contained in any closed surface moving with the fluid
will always remain in it; that d the elements whiob are inside the fluid will never come on its
surface; that all the elements which me on the boundary surface of the fluid will never come
inside the fluid, etc.; so that the whole motion is considered only as a continuous deformation
of the fluid medium without any alteration of the mutual grouping of the elements. If we now
consider for example the flow of a viscous fluid running out of a pipe into a reservoir, considering,
as generally admitted, the velocity of the fluid on the pipe walls equal to zero, and if we attempt
to follow the deformation of a fluid element, we very esdy see the impossibility of such a concep-
tion. It is enough ta remember that the elements all keep@~ close together will be found in some
cases making some hundreds of thousands of revolutions per second.* The admittance of conti-
nuity in such conditiom seems to be very difhcult. In all probability, the real motion must
consist of a’ succession of continuous states of motion i.nterrupbd by discontinuous intervaIs.

The following question csn very naturally arise: How did it happen that in the domain
of rigid dynamica we at once reached so many resdte which stay in close agreememtwith the
motion of real solid bodies, and that in many hydrodynamical problems we have not been till
now able ta secure satisfactory solutions. The fact lies in the nature of the question. In
the historical evolution of mechanics the concept of a rigid body was first fully reached. The
formation of this concept did not present any special difficulties and its application to the
am$ysis of an enormous number of problems of practical mechanics has shown at once all its
power. The scientific viorld was already in the possession of a fully developed rigid dynamics,
experimentally veribd, when, in Etier’s fies, attition was brought to the general problem
of fluid motion. When the concept of a perfect fluid was reached it was instinctively sssumed
that this conception bore a relation to the red fluid quite as close es the conception of rigid
bodies to a real solid body. It was with great astonishment that men recognized the disagree
rnent which began to appear between the corwequences of the hydrodynamical equations and
the hydradic experiments. For a long time the investigators in hydrodynamics somewhat
skeptically considered the disagreement betw= theory and practice, and did not pay much
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attention to it; and I wiJ.1allow myself to say that probably some of them believed more the
conclusions of their equations rather than the experimental results. The great success of rigid
dynamics in its origin is without any doubt one of the principal reasons why there has been
so much confidence in the concept of a perfect fluid and why in a certain period of the devel-
opmaut of hydrodynamics this science has been brought to a very abstract development,
more as a mathematical discipline than as a science of nature. But the demands of the mag-
nificent conquest of the aerial ocean by the airplane has, I think, definitely brought the
hydrodynamical science on the right way of one of the most important natural sciences.

If we review the foregoing, we can now give the following statement of the question of
fluid resistance:

To be able to calculate the fluid resistance of a body, we must first determine the type
of flow which takes place around the body in the case considered.

It appears that the conditions which hold at the surface of contact of fluid and solid con-
stitute a special diiliculty and hence that special conditions exist thare. It may tharefore
seem that it is necessary first to make a special study of the problem of the flow of the fluid
in the immediate neighborhood of the body. As conditions of flow depend upon the shape
of the surface of the body and the physical properties of the fluid, I think that the solution
of this problem could be obtained only in sn ernpiricel-theoretic.alway; that is to say, to find
out by what quantitiw, experimentally measured, we can fix the mutual relation between the
surfaces of contact and the fluid flov@ along them, so that these quantities once known,
the flow in the neighborhood of the body couId be determined. It seems that only a thin
layer of fluid is disturbed by the immediatwinffuence of the surface of a body and that- at a
moderate distance from the body the infiuence of the body surface practically disappears.

The conditions of flow in the portion of a fluid remote from any rigid body seem to be
easier to understand than the conditions in the immediate neighborhood of. a body. In the
remote fluid portions we can have contiuous motion, and so long as continuous motion takss
place no vortices can appear m-thin the$uti, and thi8 independently of any ammptim as to
Vi8CO&it~.1The appearances of vortices can only come from the formation of eurjaca of di.s-
mtinuity in the fluid. The mechanics of formation of the latter surfaces is very probably
the following:

A real fluid has to be considered se a fluid-elastic body (in opposition to the sofid-elsatic
body), the stresses in which are fixed by the distribution of the velocity gradient. The fluid-
ehstic body can, without any doubt, move as a continuous whole only provided the stresses
at all the points of the fluid have not reached a c~rtain value. If some of these stresses exceed
a certain maggtude, which must depend upon the properties of the fluid, the fluid may break
at that point if tension strmses appear, or slip, “Hthe strssses are sheaxs. It is in this way
that surfaces of discontinuity arise in a fluid. But the ex.istanceof them can be only a momen-
tary phenomenon which is replaced by vortices, the surfaces of discontinuity being unstable
in regard to viscosity. We thus see. that the study of the problem of fluid resistance must
consist f3rst, of finding out the conditions under which continuous motion of a fluid can take
place around a body. The system of stresses in the fluid around the body seems to be the
criterion for that continuity. When the latter conditions are not satisfied, then we shall have
to find out what systems of vorticw can be compatible with the problem; then, afterwards,
when the type of flow is exactly fixed, the fluid resistance can be calculated by the theorem
of momautum.
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I wi.Uhere ask the reader to pay speoid attention to the following fact. The formation
of speoial types of vortex systems behind a body moving in a resJ fluid is a direct consequence
of the enew dissipation inside the fluid ow@ to viscosity. As will be shown in this pam-
phlet, the work of the fluid resistmce forces brings with it the necessity of the formation behind
the body, in the limiting case, not only of the interior surfaces of discontinuity of the Kirchhoff-
Lord Rayleigh theory, but also of a system of exterior surfaces of discontinuity remote from
the body. AU these surfaces of discontinuity are constituted by vort= sheets. But such
vortex surfaces of &continui@ being unstable, they go over into stable vortex systew, the
quincum vortex system being the one most generally obtained, for the case of large aspect
ratio. I cal fundamental wave the vortex motion generated by the exterior vortex surface of
discontinuity, and seconday umve the vortex motion generatad by the interior vortex surface
of discontinuity. We can now understand why at small velocities the flow around a body
approached more a continuous flow. At small velocities the work of the fluid resistance forc~
is smaU and is quickly dissipated iuside the fluid. But at greater flow velocitks the work of
the fluid resistance forces can not beat once dksipated in the fluid, and a decrease of the kinetimd
and potential energy of the fluid is produced, ~hich gives rise to an oscillatory motion of the
fiuid left behind the body, and thus a progressive dissipation of the lost energy is realized.

We thus see that the whole question of the problem of air r~tance comists in finding
out the conditions which determine the kind of flow around a body, and we see now how far
the first attempts to mdculate the fluid resistance were from reality. They can only be con-
sidered as attempts to draw the conchsiona from certain =sumptiom, and it is only with time
that the idea of the conception of a real fluid, which was always problematic, has slowly been
reached; and ~e find ourselves now ordy at the beginnhg of the development of this great
que9tion.

This pamphlet must be considered only as an introduction to the question of the law of
air resistmce of aerofoils, which will give a general review of the present main knowledge
of that qumtion. But a special attempt wiII be made to show the inmfhciency of many con-
ceptions often admitted, and to indicate the ways in which, it sems to me, future investigations
must be undertaken. At the end I have added some notes which I think will be of interest
for those who wouId like to have more complete referent= concerning the questions discussed.

.tiong the questions contained in this pamphIet the following are taken from the author’s
lectures, given s@ce 1912, at the Polyteohnical Institute of Petrograd: The scheme of the
phenomenon of fluid resistance; calculation of the apparent angle of deflection of the stream
behind an aerofoil; the estabhhrnent of the fundamental wave created by the motion of an
aerofoil and the determination of its characteristic elements; determination of the part of the
drag due to tip vortices and its dependence upon aspect ratio; connection between tip and
edge vortices and the relation of the last to the drag and the lift of the aerofoil; generalization
of BernouilIi’s theorem; exact demonstration and generalization of Kutta’s theorem; the
equation of metacentric curvas in Plucker’s coordinate.

The author takea pleasure in thanking Dr. J. S. Ames for his kind assistance givm by
reading the manuscript of this Report and correction of ita style.

(2EORGE DE BOTHEZAT.
WASHIWJWN,D. C., September, 1918.
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PRELIMINARY CONSIDERATIONS.’

When, under earth conditions, a certain body is moving, ita motion necwsarily takes place
in a fluid, more generally in air or water.

When the velocity of the body is relatively 10W,or the fluid is of low demity and low
viscosity, the action of the fluid medium on the motion of the solid body is not very marked.
In those csses we can, without appreciable error, abstract ourselves from the infiuenco of thti
medium and consider the motion of the body as taking place in a vacuum.

When the velocity of the body reaches a certain value in a viscous fluid of finite density,
the action of the medium on the motion of the body becomes of primo importance. In that
case, to be able to study the motion of a solid body, we must, in addition to the forces which
act on the body and among which we necessarily have the Archimedes lift, add a system of
forces which express the action of the fluid on the difTerentelements of the surface of the body
in motion. This system of superficial forces, which ia distributedover aUtle surface ofthe body,
is generally called jhid re&ance.

For any body having any general motion in a fluid, the determination of the fluid rwistauco
is so complex a problem that ita general solution can actually not be found either oxperimontally

* or theoretically. Only some very simplo cases of uniform

\

I c: and rectilinear motion of bodies have bctin, until no-iv,sub-
p<~.. mitbd to a more or less complete investigation.
:$?::;+

-L=

We imaetie a solid, which is brought into motion with.<@;,’;..”;:,;&-,.. .. ...$*.4+. .,7>~,,~::dav?!-:’=- “’ a rectilinear aud uniform velocity of translation, in a fluid
;,..,.:--- ,73,.

.,.,*,., .-, + medium, which is immobile with respect to the earth, which
has uniform and constant temperature, and which has such

I%.1. dimensions that the disturbances caused by the motion of the
solid do not reach the lwundary wrjaw of the jfwii. In that condition, at a time which is
generally somewhat after the body has reached this constant velocity, certain steady conditions
am ostabliebd. The solid is, so ta stty, accompanied in its motion through the fluid by a
certain stati of disturbance of tha fluid around it. There was a time when it was thought that
this disturbance has, relative to the body, an invariable configuration; but we now lmow that,
generally, this disturbance is invariable relative to the body only L$ore the same, and that
behiml it we often have a state of periodical disturbance. The result of this disturbance is a
system of steady or periodical forces acting on the whole surface of the solid, This system of
forces, which constitutes the fluid resistance, can always be brought to a resultsnt wrench,
whose components will be designated by k?, for the resultant force of the wrench, and by 0,
for the resultant torque of the wrench, (See fig. 1.) If these above-mentioned forces are

periodical, we will understand by 1? and d the mean values of the redmnt force and the
resuhant torque of the wrench.

It is quits possible that, for the same body brqught into motion with the same velocity,
the system of forces of air resistmce may be different, depending on the manner in which the
body is brought to its state of motion, but it seems that in most general caee+ the viscosity
t.mds, so to say, to make uniform all the possible typos of disturbances around the body, so
that, generally, in a free fluid, the same disturbances are always established around the body when
it reaches the same vdocity in the same fluid. In that sense we can say:

For a 8ohd body, moving in a ~wid medium &th a cOn&nt vekx?dy, there corri%pondaa
detwninti$uid widamx.
—.

IThe maincontmfsof this obaptarare takanfromthe first obapt8rof the Author’s{rEtuda deIa StabfM da1~.laroplane~)Pti 1911,
. .--, L. —
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We therefore me that, when the body hss reached a steady state of motion, the resultant
force ~ and the resultant tarcpm ~ of the wrench of the fluid resistance are independent of the
time, and me functions only of the magnitude of the velocity and ita orientation toward the
body.

U?ldmth+?‘%W Of&.d T88i&Z7&C8jh’ Wlijhl t?Wb8kti01b Of (Z80hd,y’ We d tMld@8tQMd &

fornuik w?iichgive, in poti and rnqmitude, th4 re3ul&rbtfme E and & raultan.i torque C
of the wrench of jluid resietanw, as functions of the chara&&tic8 of thefm and the ii!inwn&Me
of i% body under con.sidemtion, and t?k mugnitude of the vebi$y of the body rekztice to the j%id
(zna‘itsOrie’nta$iontoward the My.

It must be remarked that the components ~ aud 0 of the resultant wrench do not replace
-..

fully the fluid resistance, but am equivalent to the system of forces of fluid resistance in only
one single sense, namely, that modification which the fluid resistance introduces in the motion
of the body will be the same when we replace the system of forces of fluid resist&e by the re-
sultaut wrench. Iu all other relations ~ and ~ are not equivahnt to the fluid residxmce; for
example, the stresseswhich me produced in the body by the system of fluid resistmce are entirely
modified when we substitute R and ~ for the fluid resistance. The resultmivmench of a 9y&m
of forces is only an analytical transformation, the possibility of which is established by the

—

theorems of mechanica and which allows us to reduce a
given system of force9 to its simplest expression. The
resultant wrench is determined onIy with one degree of
freedom, its position on its line of direction being entirely

----

arbitrary. There is no interest in seeking for an exact
position of the wrench on its line of direction. These
data would not give us e.uy comphmmnt.aryindication
upon the motion of a solid. The motion of a soLid is \\
absolutely determined when the resulting wrench of the
system of acting forces is given in magnitude, &ection,
and sense. The position of the wrench on its direction
do~ not enter into the question of motion.

It is easy tQ see that the system of forcm of fluid
resistance cm nevrm be reduced to a single resultant l?ti.9.

torque, because, if that were possible, the body once brought to that vdocity at which this
could take place would be able to move of itself infinitely forward without any expense of
power, because it would only be necessary to equilibrate by an acting torque the torque of
fluid resistance; sad this is in full contradiction to dl we know about fluid resistance.

For the same resson the projection of the resultant force R on the direction of the ve.loci@
must always have a sense inverse to that of the velocity, because if it were not so, the body
once brought i% that state of motion at which that could happen would be able, for example,
h pull something Mnitely-the torque of fluid resistume being equilibrated by an acting
torqye-+nd so do work of itself, which would be in contradiction with the principle of energy.

W%en& ibdy under cmwiderationha a plane of symmetrypar&Z to ti vekmity,there&tance
of the$uiii is redu+xdto a unigue resul$antfwe ~ &4w in the plane of qmwndry of the aohii and
whine m“eciion on h direction of the vekmi@ ha%ahl%y8 the inver8e 8en8eof& ve?ody.

This proposition can be easily justilled. The systmn of forces of resistance will then be a
symmetrical system (see @g. 2) and can always be reduced to a system of forces &ng in the plane
of symmetry; but the latter system of forces can always be reducad to a resrdtaut force or to a
resultsnt torque. AE we have seen, however, the reduction to a torque being impossible, the
system of forces will reduce itself b a single resultant force, the projection of which on the
velocity must have a sense inverse to the velocity for reascmsalready indicated.

All the foregoing does not exclude the possibility of the body’s taking a rotary motion
as a dt of the tramlatory motion in a fluid.

lm~. Dec.So7,~7

—

.-
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We will have especially to study the law of air resistan~ of aerofoils. The model aerc-
foil generaUyh= a perimeter of approximately rectangular shape and its cross section is built
Upby a SyStSmOf&rcs. In figure 3 is represenhd in plan and in moss section through its plane of
symmetry, an aerofoil of the type mentioned, which is moa ~ air with a ~ns~t ~~o~ity
V parallel to ita plane of symmetry. The force of air reaistfmce admits nec-arily a resultant
force ~, whose projection on the direction of the velocity is in the inverse sense of the velocity.

I once more emphasize the fact that no point of the rasultant force ~ has to be distin-
guished from any other point and that the resultant form is fully specfied when we know,
fist, ite magnitude; second, its line of action, which is defied by direction and position toward
tie aerofoil under consideration. The position of the resultant force on its line of action is
ad MMurn; that is to say, no spwial point can be, from a mechanical standpoint, exclusively

--- ,-.

t?

distinguishedas point of application or center of Pressur_e.
of the-resultant force R.

Veryoft.snthe oonceptfonofpoint c4applicationcdsforceis muchmfmmder.
sbxd. Letusocursider,foreXP.Mph,a naildxedtoa solidbody,WhfChISprriledby
Sropelhstmdtobtti lnsrloh seesaws. caneertfMYa@offJM @ntof
appIim.tfanofa foresto mubody,wbfob@ut off@foatkmIStbe swj’ba qfmfurt
ofthenail witbtbe body. Wheuthe nefIfsemeIl andtbebcdy Ierfwwe can
abetreotourseIveein a tit approximationfromthesizeofthesurfaceofMl contact
mdewtitmwamht,titi~-swof tbepointofappifm-
tionofthe forceti the body. Bntwmmwe b@tos~abmt tiNti-
brfnmor tbe motionofourbody,CYXLSIdSfigft ss a SO~b@v(bYwN~ we~
tbet wesreneglectingthe defonnet!ono! tie body)underthe eotionoftbeeethg
fbrce,the oauceptkmofpoint of●pplicationloseseverymwbardcaisense,MfOnm
dfrectIyftomoorstat4memtoftheqrreetion,bemrwe,mnsidtig onIytheeqoilfhrfuro
ortbemotionofthebody,weabstractourselvesfromits otherphyeicaypropartfeato
whfcbMrmgsalsoiti desticfty. But the canefdemtfonofourbd.y esinvariable
b~titiit atmtittie aotimtiafm npcnsbwlytn mnseofmotfonor
e@brfnrn fSMsw@.rdentofti witf~ of tie formcmitd lineofnotionjsothat
from the stend@N ofmechenfeeofrfgfdMdIes@ tie megnitudeofthe forces
rmdtheirIineeofactionhaveto beeausfdersd,tbepoditfrmoftheform onthefrIinen
ofaotionbeinganyone,end we donot needh ccmsideranYpointofappiioetion.
Nothingeetonfebingmostbe fotmdIn that iaetfed. Wemust oniyrememberthe
wholestetarnentcdtheproblemofmotionoftberigidbrdy. It mustnotbetbrsrght
eitherthat themodderetfcmofsuchabstractermceptsss therigidbodyissomething
exohrsfve.On the ooutmry,oneof the mostfmportentseientifiomethodseonsieti
fntheeortingofthedMerwMsidesoftbequsatfonsstndkdbyi.detfrrgbyaMreotfmi
a@mf@w*ofabo@*ih o~erPrOP@*=@w__e of
tbe evrduttonofmr knowhdgsmrmtneverb forgottawiw doingsois the rauraof
Kreatmftiemtikl esIrappenswftbthecent8rofpressurein avf8tfrm-

InG.& In tbe beginningofthedevelopnmutofaviation,eJMby somewritersuntfinow,
it wasconsideredesevidmtthat tbemmtarofIRWSS~beingtheimfntofappfication

oftba fom ofair resistance.the sdrwknebed to beconsideredMene~ded at that @t whw.rR@& TMecxmceptionbrotrgbtat oncethefalse
orminsiorrwhfobistnIUUkords& wftb experience,thatthe Iomfw ofthecater ofKMVKYWonIdfmrwsethestabf.lfty,andthfsfek mm.
oepticmweeoniytie msnltoftheconsidemtiosroftbanotkmC4@it ofappikatior.r,wb.hh,exactlys-g, hednothingto dowiththe motionof
rigidbodfee. BYthe aid ofthe theommeofmacl@cswecsu@f@fid atwbf~ Poht we~ -dm tbef@~e ss~Wded wh~ ~ Wtt
sothat ouromchrelonefufiyooirrcidewftbmalfty. l’hfsPint IStbe04rterofMS%*e the theoremofmomemeofmommtumis applicable
to the cmtet ofmessindependentlyofits etateofmotto%sotit the Matfou of● @d body-d ifacsoxwofmassis thesamees if the
oenterofmesswasimnvmbk Frumthis rfghtconceptionwesssfn~ ~mt ~~ e~erfmw tit thewef@tM havenotnduenceonthe
e~~~ofti~-, ti~mh~~by tie- ti~r~h~w IhawstoPXm tkktqmffma Utih moratben 2 cmgbt
todqbut the WdWtimOfCOUtWOfPrWtUe fS~m~*aS*ti that Ithm@tw thfeexPmffmwo@d notbe
Unavuflfng.

Until now we have admitted that the fluid was immobile and the body moving in the
fluid, but we could also consider the body as immobile and th~ fluid running by the body in
a uniform stream. If in both cases tie realtive velocity of the stream toward the body is the
same, tie flow around the body ean be the same in both cases, if the necwsary precautions
are taken for that purpose. But it cam very easily happen that in these two cases the flow
may be different because of differences in the boundary conditions. The principle o~ rehtitiy
of hydmdynumh consists in admitting that the hid reaihnce depends oily upon the relative
velocity of the fluid to the body. It is clear that this principle can be admitted only when
the flow around the body in both cases is the same; and under the latter conditions the prin-
ciple of relativity is fully verified and is the conclusion of the general law of dynamics.
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THE EMPIRICAL LAWS OF AJR RESISTANCE OF AEROFOILS.

Let us consider sn aerofoil repreaded in cress section by figure 4, moving in wir with a
velocity constant in magnitude and direction. The air rAstance 1? of the aerofoii is fully

..—

specified by—
.-

1. Its magnitude;
II. Its position and orientation toward the aerofoiL
To fid the position and orkutation of the air rasist+mce~ as well es the orientation of

.-

the relative wind velocity V toward the aerofoil let us take as reference line an arbitrary line
LL invariably connected with the aamfoil cross section (see
fig. 4). We Will designate by a,and callit “@eof attack:’
the acute single which the velocity 7 makes with the line
LL; by B the angle which the air resistance ~ makes with

L

the normal to that ssme line, and by ~ the point where
the line of action of the air resistance 17 cuts the line LL,
which point will be called center of pressure. The orients- —

tion of the aerofoil relative to the velocity V is fully speci-
fied by the angle a.

It has been shown by numerous experiments that the ma.4.
remltut air resistance encountered by an aerofoil, for cartain intervsls of the velooity varia-
tion, follows the following empirical law:

I. In magnitude tie air resistmce ~of the aerofoil—
(1) Js proportional to the area A of the aerofoil;
(2) Ii proportional to the square of the velocity V of tie aerofoil relative t.athe air;
(3) Isa function of the orientation of the aerofoil toward the relative veloci~ V;
(4) Is proportional to the air mass density&
H. In position and direction the air resisttmce of an aerofoil is independent of the msg-

nitude of the velocity V and depends only upon the orientation of the aerofoil toward the
relative velocity.

The for~ing empiriwd law of air resistance of aerofoils can be stated in the folIowing
formula:

B =Rk3APf (a)
in which k is a oo~cient of proportionality snd f (a) a function of the angle of attack which
is characteristic for the type of aerofoil considered. The lmt formula can also be written:

R=lL4Pf(a]
or

R= KAP-kJAV
where

K=kil; Ei-Ef(a)-kJ;
the codlicienta L snd k= being certain functions of the tmgle of attack a onIy.

It is customary in aerodynamics to considw the rtmdtant air mistrmce ~ decomposed
into two components, the ~- R=, along he relative velocity; .“.

R===R sin (/3+cx)==.&4Psin QS+a)
and the lift R9, along the normal to the relative velocity.

R~=lZcos @+a)-ZAPcos @+cY)
89

..-

.-
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when the air ra~istmce R is in direction independent of the magnitude of the velocity V, we
can write

Rz-&4P=k$AP
RU=&4P=k#AP

where
&=7C.a=Z&(P+al
lKV=Z#=~cOS Q3+a)

the coefficient k. and kv being functions of the angle of attack a only.
Let us now examine the cmact.mem@ of the foregoing empirical laws of air resistance

and the restrictions to which these laws are submitted..
We shall begin by. an exact statam~t of tie defition of all the quantities Wtich- occur ““ -

in the foregoing laws.
The angle of attack. —Let us designate by a, the angle of attack measured from one ref-

enmce line LILI and by aa, tie angle of attack measured from a segond reference line.L~,, con-
nected invariably both with the same aemfoil (ses @ 5); and let e be tie axq$e betwem these
two lines. It is easy to see that we have -.

aa=q+e
If the direction of V varies, we shall have

%+ AfY,-al+4+~
or

A%= Auk
becam~ec is a constant angle.

We therefore see that the variation of the angle of attack is the same for the same variation
of the velocity orientation, independently of ti refermce tie from which the angle of attack

--

FI13.IL FIG.6.

is measured. It is probably for the ket reason that in the beginning of the development of
aviatiom it was thought that the reference line used to fix the angle of attack can be ihosen
arbitrarily, and the chord of the aerofoil was generally adopted as such reference line. There
would be nothing to say against such a convention if we had to do only with aerofoils
with cross-sections of the same type, but all the difEicuMesbegin when we wish to compare
aerofoils with cross-sections of diffarent profiles. It is in the conception of chord that the whole
misunderstanding lies. In geometry the word chord is defined as a straight line joining two
points of a curve, but what is the chord of an area like the section of an aerofoil ? Nobody know
exactly, but, what is still worse, is that it is impossible to estabLishsuch a defiition. When
the cross-section protie of the aerofoil is formed by two curves which cut one another, we
instinctively take as chord the common chord of the curves which limit the profle considered
(see fig. 6a); but for proflw such as represented on fig. 6b two such chords can already be drawn.
We are still more perplexed for the choice of the chord in the case such as shown in fig. 6c, in
which any line drawn through that profle could with equal succws be considered as chord.
From those simple example~ we see that the celebrated chord is nothing else tlmn a referenco line
which is chosen arbitrarily. In such conditions when could we say that the profiles a, b, and c
of the fig. 6 have the same angle of attack.i When we have to do with a flat plata the defl.ni-
tion of the angle of attack presents no diTiculty. It is evidently the angle between the relative

1mfsleatqucdtfonb o!EMfmpxknm fwavfatfonpract!ce. Foraxatnplqhowonnwajnd.gafortwoafrplanMhavfngtheicwlngBofd&rant
—-—— .—

Omss-soctfoqthnttheyareflyfngUn&the mmoU@ ofattaok?



AN INTRODUCTIONTO THE LAWSOr AIR RESISTANCEOF MBOFOIM. 101

velocity and the pItite itself (see Q 7). But what is the aerodynamicaI characteristic of the
direction of the flat plate? It is nothing else than the direotion for whioh the lift of the plate
is zero. When the wind blows along the pIate, the whole air resistrmoe is reduced to drag
and we have no lift. It is consequently from the direction of zero lift that we messure the
angle of attack of a flat plate. Thus the direotion of zero Iift forma our reference line in that case.

Many yearsago Paul Painlev6 indicated that, if we wish to obtain a rational basis for the
estaldishment of the definitions of all the conceptions which we use in connection with the air
resistance law of wofoils, we muzt simply draw a parallel between the aerofoiI and the flat plate
considered ss a conceptions.I standard.

Adopting this standpoint, we shall adopt as reference limeof each aerofoil the direction for
whioh its Iift is zero and we shall call that Iine the zero lift tiw or, more simple, the zero line.
The plane normal to the symme~ plane of the aerofoil and containing the zero line will be
called the zero pZane. The zero pkme and the zero line are experimentally fully determined for
each tumofoil.

IA us considw an aerofoil (see fig. 8) on whioh the wind blows successively in the directions
V,, V,, V& V. and let Ru R,, ~, R4 be the air rwktance corresponding b those diredions.
We reaoh the zero IiIMwhen the resultant air resistance is in the wind direction, as is the case
for R& The zero line has to be determined experimentally not only in direction but also in
exuctposition relatively to the aerofoil.

It is easy to see that for each type of aerofoil we generally have four zero Iinee sa shown on
iig-ure9. We shaU adopt as atundurdzem he the one which correqonds to zero lift when the
wind is blowing on the enting edge. It is tie zero Ii.newhich corrqonda to V, and B, in
me 9. The angle of attack measured from the standard zero line will be designated by< and
called absokde angle g.f ati.d or absohde &wi&n.ce (see fig. 10); distinguishing this angle from
the relative angle of attack a measured from any other reference line. The standard reference
line and absolute sngle of attack as above deilned are important aerodynamic characteristics
of the aerofoiI.1

The partisans of chord have reproached the definition of the standard raference line with
the fact that it is di.f%cultexperimentally to meesure the incidence from that line. But it is
quite another question when we have to determine in experimentation the orientation of aerofoils
in the wind current. In that case we certainly must choose as rakrence line that line from whioh
the measurements are most easily made and such a line oould be called the cxpm-mentd reftience
line. The question of experimental reference line is a question of the teohnic of experimentation.
In one experimental method, one line is more convenient; in another method, mother line is
more convenient. But when stating the resuhs of our experimentation, w-emust alwa~ give
them in absolute angle of attack, because only in this case will comparison be possible.

Finally I must also mention the following fact: It can happen that for a certain aerofoiI
cross-section the lift may be zero for any direction of the relative wind within a certain angIej
as shown in figure 11. In that case one of the estreme zero lines, VIR1or F4R&of the above
figure, ought to be taken as reference line. In such a case, the lift curve plotted, for example,
as function of the incidence would have the shape shown in figure 12.

The aerofoil area. —The area of an mrofoil also needs a special de6nition. According
to our standpoint of a parallel drawn between aerofoil and flat plate, we shaIl adopt as “ aerofoil
area” the area of the projection of the aerofofl on its zero plane. (See fig. 10.) Only with suoh
a definition will be avoided all the diflicult-iesand indeterminations, as will be easy to see from
the detailed discussion which has been made for the angle of attack.

The center of pressure. -To avoid difEculties, we must also adopt as center of pressure
the point of intersection of the zero Iine with the remdtant force of air rehtance K

1Foraxampl~anabsolntefm?idenceofEvad~masns thatsffvmdegreedWJWMIXthefJII@ofattaokbringudto zeroIlk Ror the aero-
.

foflaaourallyruedInaviationpmxtlcethe staadmd - IIneh genemllydtspmedabovethe mrofoiIjwhfohmeansthat when the absolnti
incfdencclaequaltormotheelr reuhtwmmgivmrira toa momentrak.tlveto the 6nt8ringml@.

—
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I shaIl show in a few words what, for exampIe, happens if we take for the center of pressure
the intersection of the so-called chord and the air resistance ~. In figure 13 is represented
an aerofoil and the system of the reauhkmt forces of air resistance RO,l?l, R,, B,, R,, RJ, for
different angles of attack increasing in an arithmetical progression. If we follow the dis-
placement of the center of pressure G“ referred to the chord, we easily see that there is one posi-
tion of the air resistance when it is paralbl b the chord, and the center of pressure goes to
infinity. So that the curve of the center of pressure taken on the chord has always for smell
angles of attack an ssymptob. The general shape of the curve of centar of pr~ure in that
case is shown in iigure 14a, where is plothd the distance of the center of pressure 0’ from the
entering edge A’ as function of the relative angle of attack a’. ~ we take the center of pressure
on the zero line, then the curve of cent= of prwmre will not have any point at infinity and
the curve of center of pr-ure will have the shape represented in figure 14bij where is plotted
the distance AC (see ~. 13) as function of the absolute incidence i. The passage of the center

.-.-

of pressure to infinity when taken on the chord is only a consequence of a bad deflnitionj because
it must be remembered that in tie defition of the center of pressure we must be guided only
by convenience.

To illustrate fully the meaning of the conception of the center of pressure, I shall draw a
parallel between the notions of center of pmwure, & of ma..m,and mtiuenter. ‘

Let us first consider two parallel forces F’l and F, of constant magnitude applied at two
-.

points 1 and 2. (See fig. 15.) Aa well known, the resultant RU of these two forces will be
parallel to them and will divide ha distance 1, 2 in inverse ratio to the forces F, and F,. If
we consider now the two forces F“ and F, turning around their points of application but main-
taining their magnitude and remaining parallel, the resultant force Rfi wili also turn around
a deff.nite point. If we consider now a s@em of three parallel forces FU I“, F’.’.constant in
magnitude and turning around their points of application, it will be eaeily seen that the
resultant force of the three forces w-ill also turn around a definite point, because RU* is the
resultant of RU and F,, and so on, independently of the number of forces The poiht through
which the rwultant force of a system of constant parallel forces ttig around their points

—-

of application always passm, is called the centm of the parallil fom.a. The center of mess is
a particulsx case of center of paraUeIforces when the forces considered are the weights of the
diflerent elemenk of a body.

Let us now cmsidar genedly tiny system of forces applied at any points. If we ccm-
—

sider the continuous variation of these forces, their resultant force will also very continuously in
magnitude, position, and direction, and will desciibe in space a certain surface which is called
the rn.etacentricsurface. When all the forc~ considered lie in the same plane, the resultant

- .-—.

force also lies in the same plane and the metamntxic surface is reduced b a metacentriccurve,
which is the envelope of the successive positiona of the remltant force. The pornt at which
the resultant force touches the metacentric curve is called the metacenter. (See fig. 16.) When
the forces considered are parallel and constant in magnitude, the metacentric curve reduces

—

to a point. We therefore see that we can consider the center of mass as a particular case of
metacentric curve reduced to a point.

If we consider the system of forces of air resistance of an aerofoil, these forces admit a
metacentric curve md it wiU be easy to see that this metacentric curve has always a cusp
point admitting the zero line s9 tangent at that point. In figure 17 is represented the general
shape of the metaoentric curve of an aerofofl. For comparison, in figure 18 is represented

-—.— -

the metacentric curve of a flat plate.x
—

The important fact is that the center of pressure is neither a center of parallel forces nor
a metacenter, but simply a point arbitrarily chosen to fix the position of the resultant force

ITheede WJMm dg. 14sfa pbt the dbtanceA’CYissrmdlerthan the maleneedondg. 14bto pbt AC.
.L——

~h! the 6hearyoftheafcplmethemetacentriec?xresdonothavethe8eme~ as fnshfptheory. In the lest theorytbs metmxmtrfc
Curvtu*Ws dhwt etindon ofthe ~ mmmnq cmeccountofthst factthab to a M sppmxbnatb%the fIfttngfmceCM● tip lacon-
stsnt wheretheW@undergoesawiflatkns. It Ssnot theuee forthedrpl!me, wherethe lfftfngftucesarevmrfabhh magnltndewhentheakpbme
is cmlffetfng,eothet themeteeentrfemm alonedrmnot determfnethe reatucfugmoment. Thet fswhyfareerafofbthemetscentrkewzvaronet
M~#@~~v~*~ mlpk*tititit it M~~t*dtiti-h @tin@Hkm
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of air resistmce. That is why we must choose it inihe way most convenient for our purpose.
For this last reason we shall take the center of pr-ure on the zero I@. In that case we shall
have no point of the center of pressure curve in infinity, and the cusp point of the meta-
centric curve will be the knit position of the center of pressure on our zero line.

The velooity.-!lle velocity V which en@rs in the formulas of air resistance of aerofoils
disposed in a uniform, fluid current has to be taken in front of the aerofoil and at such a dis-
tance from it that the disturbances in the medium caused by the pm-ence of the aerofoil do
not reach it. This distance generally lies in front “of the aerofoii between one and two
times its breadth.

The fktitious equivalent plane.— h a summaiy of all the foregoing discussion we are
brought to the following conception:

Let us consider the zero plane of an aerofoil and project on this plane the aerofoil and
take this area as the ,jctitious e@va&nt plane, or, shorter, as eguiwhmt plane, of our aerofoil;
that is to say, attribute all the properties of our aerofoil to that plane and refer all the quan-
tities which we use to describe the law of air resistance of aerofoils to that fictitious equivalent
plane, We shall thus take as area of the aerofoil the mea of the equivalent plane. (See fig.
19.) We shall measure the angle of attack from that equivalent plane and this will be our
absolute incidence i. We shall take the center of pressure oh that equivalent plane and fix
the dhwction of the force of sir resistance R by the angle /3 of its inclination to the normal to
that equivalent plane. Under such conditions, all the formulas of pages 2 and 3 have to be
referred to the equivalent plane; and in that case we shall write:

L The magnitude of the air reaietance ~ of aerofoils (see @. 19) . . .._
R =7c6AVT(O = KAV~(i)

—.

R=&i P=k~AP
where

K=kq ~= l&(i) =kd~
The drag

R== Rsin@+i)=K’P=k#AW
The lift

RY=R 00S Q9+i)=K&P=k$AP
where

&J=?&i3=&sin(p+i)

KV=k#=&cos@+i)

the coe%iciente Ka, KMand k=, ku being functions only of the absolute angle of attack i.
Some general data on aerofofls .—To the foregoing formulas I will add the following

remarks:
For the orientation under which the aerofoil is practically used, the lift of the serofoil

is generally equal to zero only when the wind is blowing on the back of “the aerofoil, and the
equivalent plane is disposed somewhat above the aerofoil The position and orientation of
the equivalent plwe can, in general, also depend from the value of the speed V, so that to
different speed intervals cun correspond, for the same aerofoiI, different equivah.mtplanes.

‘Starting from zero absolute incidence, the air r--istance ~ rises very quickly out of the
zero plane, so that for anglea of attack around 5°, the air resistance make-ssmall angles with
the normal t.a the zero plane.

For the aerofoila actually used in aviation for smell angles of attack, the ratio of drag
to lift can reach I/20.

For actual aerofoile, considering the incidence increasing from zero, the center of prmmre
first approaches the leading edge (see fig. 17)--that is, travels in a sense inverse to that for the

---..-

case of a flat plate (see fig. 18)—and only afterwards, for greater values of the angles of attack
(generally larger than 10°) the center of pressure begins to trav~ away from the leading edge.

The coefhients K., & and k=, kv, for equal vsluea of the angle of attack, have the same.
values only for aerofoiIs having similar croaa-section and similar perimekrs; and still in that
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case their values also depend upon the magnitude of the aerofoil area A and the magnitude
of the velocity V. These codlkients do not mu-y much when the magnitude of the aerofoil
area changes, end by the variation of the velocity the coefficients & and ii= are principally
affected-they diminish when the velocity increases—the codficients & and ktido not seem to
depend much upon velocity for a value of the last above a catain value.

For small angles of attack-up to around 10°—for most. actuaJ aerofoils, the coefEcients
kVfollows a linear law and the coefficient k= a parabolio law. So that for such angles we can
write

kw=ti
k==k(a$+bi+c);

so that in such a case the lift and drag of the aerofoil have for expressions

Rv=k6AT%= KAPi
Ez=k~AP(aP+M+c) -~ P(aP+bi+c)

The value of the cueflicient K depends upon the awpectratio L/b, that is, the ratio of its span L
to its breadth b. For values of &is ratio equal to ~bout
5 or more, the coefficient K for mosfi actual aerofoiIs, for
usual atmospheric conditions, has a value near to 1/200,
the units used being the meter, the kilogram, and the
second. For smaller values of the aspect rabio, the
value of K diminished.

DifYerent characteristic curves used to plot
the results of measurements of the air resistanm
of aerofofIs.-To plot the results of measurements of
air resistance of aerofails diflerent systems of curves are
used. From any system of characteristic curves giving
a full spedlcation of the lawe of air resistance of aero-
foils, we can deduce any other one.

Fir8t method>-The most direct way of representing
the air resistance of an aerofoil is to plot the curves of
the coeilicients ~ or ki as function of the angle of
attaok i, and the curve of the angle p as function of the
angle of attack & The ~ or k{ curve giva9 a direct
evaluation of tie magnitude of the force of air resistance;
and the 6 curve gives the laws of variation of the incli-
nation of the air resistance to the normel to the mm line.
curves are represented in *e 20.

FIQ.n.

The genend shape of the K{ and @

... .—

.—

-.

#econd nwt7wd.-Another method very widespread in the practice of modern aerody-
namicil laboratmies is to plot the hft curve KY and the drag curve & as functions of the
angle of attack i. To these curves the drag-lift KJKY curve is generalIy added. It is much
more convenient to use the drag-lift curve than the lift-drag curve, as it is made sometimes,
because many fundwmntd properties of the airplane are directly connected with the drag-
lift curve? The gencwsl shapes of the drag curve, the lift curve, and the drag-lift curve are
represented in figure 21.

Third method.-Probably one of the oldest methods used to represmt the laws of air
resistance of aerofoils consisti in plotting the lift coefficient es function of the drag coefhient.
This method was used by IXienthal. When using this method the angle of attack is marked
on the curve. (See fig. 22.) This method presents the advantage that we can also read on

.—

the curve ~== F’(.&) the variation of the drag-lift ratio. It is easy to see that the tangent
..—

I’I’hfsmeth wlofplottinglsnwdby f&snthar krpro@er mdmlatfons.
. .. —.-

Ssea,forexemple,G. de Bot&zet,‘iEtade de In StaldIiUede l’Ae.mpIene,”pp. M+ Pa& IMI.
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of the angle 7 which a line joining the origin with a point of the curve &- F’(IQ makes with
the & axis is equal h

17

so that we can directly plot a scale for KJKV on a parallel to the Z axis. Each straight
line joining the origin with a point of the KV= F(KJ curve cuts off on that scale the value
of K=/&. The tangent drawn from the origin to the curve KVE F(IQ gives the minimum
of the value of &/Kti.

In his last research on aerofoile, Eiilel uses tliis method and for convenience plots the Z
at the scale ten times bigger than the Kfl.

Rm.m. RIG.22.

To specify fully an aerofoil by each system of the foregoing curvss, there must be added
the curve of the center of pressmreand the zero line in exact position and direction. It is
also good to draw the metacentric curve which gives a full picture of the positional and direc-
tional variation of the forces of air resistance.

I must also add that it is necessary that the data on aerofoils be at least determined for
an intarwd of – 90” to 90” of absolute incidence. This is on account of the fact that we must
not limit ourselves to the actual necessities, but must also give data which future research
and discovery may need?

.-.
1.4sexnmple,I eanIndkatathe followingfackOnlybemuwthe aerofolldafavwe not enoughextended,wecanmt actualIyoaloulatathe

wofa~tim-w atatimtw-v= ~e~~m~=e-yatm-. Aruo@erat* M PO~twor~ *
very@a an&le4o!at- 20”,30”,40”,and in mm CeSwdill grf$ater.
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THE FLOW AROUND THE AEROFOIL

In the beghming of the development of aviation, the main knowledge arose at fit only
to the general quantitative relations about air resistance of aerofoils, and it is only very slowly
that light has been thrown on the flow phenomena.

For en aerofoil moving with a uniform and rectilinear velocity in air the following flow
phenomena have been progressively discovered experimentdy.

I. On the upper surface of the aerofoil we have a deoresse of pressure and on the lower
surface of the aerofoil we have an inoresse of pressure. The depression oreated on the upper
surface is, for small angb of attaok, always larger than the incresse of pressure on the lower
surface, so that the Kjt oj the aerojoil h due
nwretoa su.ctbn exertdontlie upper tiethan
to thepram.meawrted on the Z.owwd.

II. The stream in the wake behind the
mrofoiI appears to be deflected downward.

IIL From the tips of the aerofoil vortices
run off whioh we will call the tip mrtti (sss
Fig. %). The rotation of the fluid in these
tip vortices hes the sense from the outside
spaoe into the inside space between the vor-
tices, if we look from above.i

N. k the space between the tip vortices
two kinds of flow cart take plaoe. For very
small angka the flow is continuous; that is to
say, we have no sensible turbulent motiom m~.a

But when the angle of attaok inore= beyond a oertain vslue of the last, there appear on both
edges of the aerofoil vortiw, parallel to these edgw, whioh we will cdl the edje vW*. The
greater the velooity of the flow running on the aerofoil, the smalleris the angle of attack for whioh
edge vorticm appear. These edge vortices m not stationary with reference to the aerofoil.
They grow upon the edges of the aerofoil and, when they have reaohed a certain intmsity, they
run off in the general direction of the stream behind the aerofoil, so that these edge vortices
have a certain velocity with reference to the aerofoil.

The edge vortioes which grow on the upper and lower edge rotata from the space outside
the two vortices into the space inside, when one looks fiwm above, so that behind the aerofoil
there appeara a system of vortices in quincunx Z rotating in inverse senses (sea f&. 24). The
ends of these vortiw go over into the tip vortioes. As the edge vortioes are rotating in inverse
sfie the mem vslue of the intensity of the tip vortices is not modilied by the edge vortices.
We now see that the general picture of the flow behind an aerofoil looks like a vortex ladder
lllmlhg off thd aerofoiL~

So far as I know, exact mewurements of the depression on the upper side and the pressure
on the lower side of an aerofoil were fit made by G. Eif%l. The apparent stream deflection
behind the aerofoil seems to have been observed by many investigators. The neoessity of the
existence of tip vortioes seems to have been iirst indicated by Lanohester. The vortioes in
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quiuounx were tit noted by Karman for the particular case of the orthogonal motion of a flat
plate and the motion of a cylinder.

Before attacking the detailed discussion of the above-mentioned flow phenomena, I shall
first make some general remarks on the flow phenomenon around a solid body moving in a fluid
with a uniform velocity.

Clenersl soherne of the phenomenon of fluid resistance.-I shallheredevelop a generaI
scheme of the fluid resistance phenomenon, which must be considered as a conceptional limi~
but which take account of all the fundamental circumstances of the fluid resistancephenomenon
in their most simplified form, and th~ allows a better view of the relations which hold.

We shall tit consider the case of an infinite cylindrical body having a plane of symmetry
and moving in an M.nite fluid with a constant velocity POparallel to that plane of symmetry,
the sense of ~o being taken as positive sense. (See I& 25.)

Let us ima.tie m observer moving with the body. For such an observer there will appear

.

a- relative stream running on the b;dy.
When the fluid is considered as perfect this
@ative. stream can be wmrned as being a
potential stream-that is, a stream ad-
mitting a velocity potential for the velocity
distribution in it. But for a real fluid, in
the case of our problem, according to the
indications of the experiment, there must
necessarily be losses inside the fluid and
thus a certain distribution of vortices in it.

.-

This last fact is a direct consequence of
the general equations of motion of a viscous
fluid, according to which there are no Iosses
inside the fluid where there are ~o vortices.1
For the general analyis of the fluid resist-
ance phenomenon we will place ourselves in
ideal limiting conditions and repIace the
eflective relative stream running on the
body by a conventional reh$ive dream, but

so defined that in relation to the fluid resistance the co&&tional relative stream will be fully
equivalent to the eflective relative stream. .

We will fit assume that in each cross section normal to the plane of symmetry of our body
the velocity of the conventional relative stream is constant. In such conditions, to take
account of the change in the distribution of the velocities in the general stream which are pro-
duced by the presence of the body, we must consider our conventions relative stream as limited
by surfaces of discontinuity outside which the general stream velocity is unmodified, but inside
which the veIoci@, being constant in each cross section, is different from the outside velocity.
(See fig. 26.) Tha surfaces of discontinuity must thus necessarily be constituted by vortex
sheets. On the other hand, as we must also conceive the fluid as adhering to the surface of the
body—a fact to which seem to lead Zahm’S’ experiments on skin frictio~ which have shown
its independence of the state of the body’s surface-we must consider the surface of the body
as covered by a vortex sheet in which gliding of the fluid takee place, the relative velocity at
the surface of the body being equal to zero. We thus see that in our ccnmption of the flow
phenomenon around the body the vorticce instead of being spread in a cabin way inside the

~A.oonrdlngto Imnb, “1’mtlse ontha MathamMoel_ of~e M* ofnuiti?’ the dMPationofenerKYindde ● fluidmea isgken
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fluid have to be conceived es concentrated on the surface of the body and on the boundary of
the conventional reIative stream. (See fig. 26.)

Let us consider now two cross sections, I and II, of the reIative stream running on the
body. Both cross sections are considered immobile relative to the body and are taken normal
to the stresm. Section 1, of conventional height& is taken before the body at a distance not
reached by the disturbance created by the body in the fluid. The relative velocity and the
prsssure in that section, uniform in the whole section, are designated by po and – ~o, this lsstt
velocity being equal in magnitude ta the velocity of the body, but having an inverse sense.
The Section II is taken behind the body; p and – T are the uniform pressure and relative
velocity in that section. The absolute velocity w of the stream behind the body is equal to

(1) W==- v-(- v.)= v,,-v.

The v~ocity w is nothing but the mean veIocity of the wake behind the body.

r
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I.& us designate by C the value of the Bernoulli
According to Bernouilli’s theorem we must have

(2)

—

—
.—— — ——

.—— —
r 5’

i

constant corresponding to Section I.

Let us follow from Section I to section II a stream line in the relative motion of the fluid
toward the body. Starting from the values p. end ~o in Section I, pressure and velocity will
vary along the stream line. W&en we pass by the body, the veIocity will be increased and
the pressure deoreased. Behind the body the velocity will drop and the pressure increase,
and when we reach Section IT we shall find there a pressure p and &velocity - ~ icmnected by
the relation:

(3) p+a~=O-A~

where AC is the drop in the Bernoulli constant, which occurs when we go from Section I to
Section IL In reality this drop is due to the losses taking place at the surface of the body by
skin friction and inside the fluid by viscosity, which losses, in our limited conception, are assume”d
to be concentrated on the boundaries of our conventional stream. Subtracting equation (4)
from equation (3), we obtain the rdation connecting POand I?Oin Section I with p and ~ in
Section IL

(4)
pO-~+Xvo’-v2)-Aa

ht us designate by D the whole amount of work done by the forces of viscmity tilde
the fluid between the Sections I and II; We can dwap consider this interior work referred
to the velocity Vo in Section I and ooryiequently write

(5) Ir-l’va

..-
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—

. ..— —

-.



where F is a fictitious force, which we call the dissipative force and which cmmqmnds to the
interior work done between the Sections I and II and referred to the velocity ~O. By its direct
meaning, AO is the interior work by unit of volume of the rektive flow crossing the two sec-
tions I and II in a second, which vohune, counted per unit of Iength of the body, as a conse-
quence of continuity, is equal to either of the two expressions

(6) &vo-7bTq

when one neglects the very small density variations. We thus have

(7)
‘“”&o-%-;

or
(8) F=&AC!

The ge.mmilpicture of the flow around the body begins now to appear more clearly. Outside
the boundaries SS and S’S of our conventiomd relatiye stresm (see ~. 25), as we consider
the fluid unaffected by we motion of the body, we thus have the uniform pressure p.; and in
the absolute motion the fluid is immobde, so that in Section II from outside to inside we have
a difference of pressures p~–p and a difference of velccitim u?= VO- V, maintained by the
conventional boundaries SS and S’S, which are vortex sheets.

Let us now apply the theorem of momentum to the fluid mass cuntained between the body
considered, the vorti sheets 8S and S’S’, and the Seotions I end II and iududed between
two planes normal to the body at a unit titance fkom one snother. Let us designate by l?==
kxIsbl?!’ the drsg of the body oounted per unit of length, b being a line= dimension of the body.
This drsg constitutes, in our ~ the remdtsnt of all the forces acting on the surface of the
body. It will be easy to sw that we have

(9) a&v; -8hF+h(~-p) =k#bvo’@)

This hat relation in connection with the relatioti

(lo) (p,-p)+&+ P) =AC=~

and
(11) v,~=vh .

gives thus three equations connecting the pressure p, the valtity V and height h in the seotion
II with the corresponding quantities p,, 7., and& in the section I. From all these quantities
the ody ones to be considered as known in our problem are pOand V@.

It is easy to show that when the section II is considered taken at such a distance from the
body that either p-p, or V- V,, we will have very approximately

(12) F=&Yi VO’

That is, the dissipative force equsls the drag.
For when ~= PO,which brings with it h-l& we have

(13) F=hu(Po-P) ‘~(po-p) -W PO’

and when p -po, then

(14) F=:&(V,i - P)

-—
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But, as will be seen in the following, when k. is a small quantity, the difference between h, h,
and ~0) 1’ in case of p =pO is negligible, so that

In the gened case

The reIations (15) and (16) lead us to make the assumption that the dissipative force can
be considered as having the form
(17) F-f6b V02

where f is a characteristic coefbient depending upon the form of the body and the properties
of the fluid and the position of section II. In the case of p =pc or V==VOwe have

f=kx
But in the general case we will have

f< k.

The inferior Iimit for f is determined by the skin friction at the surface of the body.1
AU the forego~~ constitutes, so to speak, a limited scheme of the fluid resistance phenom-

enon, but one which gives a complete picture of the relations occurring. bt us extunine the
connection between our scheme and reality.

In tie relative flow mound a body, the observed velocities in a section suoh as section I
are uniform when the section is taken at a sufficient distance from the body, but in a section
such as II the uniformity of velocity is generally not observed. This lest fact does not consti-
tute an essential difference, because we can always conceive the velocity V as a certain mean
vaIue of the real velocities.

Much more essential is the quwtion of the practical possibility of the axistence of the
vortex sheets at the surface of the body and on the boundary of the stream. It has been
pointed out by many investigators that vortex sheets in viscous fluids must be considered as
unstabl~’ Experiments performed on the observation of the flow around lniies, although
not very numerous, have already given valuable indications.g For relative flow velocities
having a sufficient value, the vortex sheet covering the surface of the body always passes over
into a system of vortices in quincunx. This last fact was first fully understood by Ksrman,
who sko indicated the reason why we get the quincunx vortex system. Karrmm’s investiga-
tions of the quincunx vortex system have shown that this system is stable. The edge vor-
tices above mentioned are nothing else than the vortices in quincunx inta which the vortex
sheet covering the surface of the body passee. For low velocities we also have in all prob-
abtity a tendency toward the formation of the vortices in quincunx, but the energy in the
wake being small, the energy of tha begkning vortices is dissipated before their complete for-
mation. The motion which is established must be a kind of turbulence which distributes
inside the fluid the vortwc sheets covering the surface of the body. The mechanism of this
distribution is in all probability the following: We either have a direct, irregular, and periodical
transformation of the surface vortex sheet in quincunx vortices, dissipated before full forma-
tion, reformation of the surface vortex sheet, snd so on; or we have a periodical irregular for-
mation of the surface of discontinuity established in the Kirchhoff-brd Raleigh theory.
These surfaces of discontinuity, which must necessarily be vortex sheets, can appear as inside
boundaries of the reIative motion, only as momentary phenomenon. At such a moment the
flow appears as represented in &we 26. But these surfaces, being unstable, quickly disappear
and the vortex intensity concentrated in them is dissipahd before the formation of a dtite
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kind of vortex motion, Such irregdar, unstable, periodical process, affected b~the smallest
perturbation, spreads the surface vortices in the fluid.

In whole probability all the observations made upon the vortex sheets surrounding the
body apply also to the vortex sheets SS’ and S’S’, constituting the outside boundaries of our
conventional rdative stream. For small relative flow velocities, those vortex sheets are in a
certain way distributed in the fluid; but for greater velocities it is possible that they go over into
the stable sys~ of vortices &@ncunx. We thus see that behind a body moving in a fluid
we shall have, in general, a periodical fluid motion. I shall caIl primuy orfudmwntal wave the
fluid motion generated by the formation of quincunx vortices from the vor~ sheets limiting the
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relative stream boundaries from the outside, and secondizy wave the fluid motion generated by
the formation of quincunx vortices from the vortex sheets limiting the inside relative stream
boundaries. Both fundamental and secondary waves will be considered in more detail in the
following. The possibility-for the existenqe. of the fundamental wave will appear with still
more evidenoe from the general examination of the flow around an aerofoil, to which we shall
now pass.

The same scheme which we have developed for a symmetrical body can be applied to an
asymmetrical body like an aerofoil. All that has bsen mid re.Iativea symmetrical body has to

Fl&.27.

be directly transferred to the aerofoil. The difference will consist in the fact that, as the aerofoil
has a lift component due to the fluid, there must be a fluid momentum corresponding to that
lift. That is to say, the relative flow behind the aerofoil must be deflected downward. The
schematical flow around an aerofoil is represented in figure 27. Let us now imagine for one
moment the aerofoil immobile and the stream running on it with the velocity ~O. The fluid
velocity outside the stream boundaries &.Sand S’S’ wiU ako be VO. In such a condition it is
easy to see that there will be a tendency to straighten the deflected stresm by the outside
stream. If we assume the possibility for the stream between the boundaries SS and 8’S’ to
become horizontal after section II, the application of the momentum theorem for the lift,

—
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between two sections suoh as I and II, wilI show an increased pressure M above and a decreased
pressure p, below. h such a condition it would be difficult to imabtie how the theorem of
moments of momentum applied to the stream portion between SS and IS’S’ on one side and I
and II on the other side oould be satisfkd. Such a flow appears impossible, and it is easy to
see that, after its downward deflection, the stream, by the difference of pressure (p2-pl) must
necessarily be deflected upwards. It thus becomes evident that behind an wmofoil we have
a wave motion of the relative stream. The instability of the vortex boundary sheets S8 and
S’S’ dso lead h this conclusion. The wave motion which is to be expected is represented
schematically in f@e 28. It is sufficient to look at this last figure to see at once that the
wave motion obtained is governed by a system of vortices in quiucunx, rotating in one sense
for the upper row and in an inverse sense for the lower row. We thus see that behind the
aerofoil we can expect to see the phenomenon of the J%ndanwntal wmv mentioned in the
foregoing.

The phenomenon of the secondary wave can also take the placa for the aerofoiL
We ~e thus brought to the conclusion that a simple deflection of the relative stream behind

the aerofoil is not ta be expectad. Nemrtheless, the relimi.narystudy of the stream deflection

\
behind en amofoiI is of interest for the following reason.

ma.2s.

Let us consider m aerofoil II disposed in the wake of uother L This emofoil II will
then be submitted b a periodical stream. Let us assume for simplicity that both the magnitude
of the velocity ~ of tie flOW_ on tie a~fofl ~ ~d tie %J.s of attack i vary according
to sinusoidal laws. so that as a first approximation we consider

V==vo+vsi+; i%-j Si&t

Z’ being the period, v tmd j tie mpfitidm of Vtiation of V and i, t the variable time. The
difference of sign in the above qtion deno~ tie fact that the veloci~ V is assumed
inmeaging when the angle of attack decreases, and vice versa. We shall also assume that for
the instant~eow V~UeSof v ~d ~ tie ratant ti-r=tim R of the aerofoil II can be
expressed by the formula:

B==2L4V%=hV%

fitjng &l .x. Let us now, under these assumptions, calculate the mean value B. of l?,
We have

B.=$J: Bdt
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As is weU known, the integrals of the odd exponents of the Sine are equal to zero, and

So thatwe fially get

For smaUvalues of v the term ~ h@iOcan be neglected, and thus

( *)RmEav; io - “v
o

and we me brought to the following conclusion: It is easy to represent such a periodical flow
that au aerofoil disposed in it wiU show, for the meau value of the air raskhmce, an apparent
decrease of the angle of attack. ‘I’he aerofoil will thus appear as if pkwed in a downward
detlectad stream. The study of the apparent stream deflection behind the aarofoil is thus
justified.

The apparent stream deflection. —If we make the assumption that aU the Iift of an
aerofoil is due to the momentm created by the defbction of the stream downward, the angle of
deflection of the stream can be easily calculated. This calculation wiU also give us a mean
value of the height of the stream disturbed by the presence of au aerofoiLin the fluid.

Let us consider a unit of Imgth of ~ aerofoil and draw amd ita contour a, 5, c, d defined
as follows (me &. 29):

The side ab of the contour is a plane cross section of the stream-taken at such a distance
before the aerofoil that tie flOW~ bat section k no! disfibed bY tie Presen~ of tie aerofoil”
It is the cross section I of the relative stieam. T&e two sides w and M of our contour are
taken along two streamlines at such a diatmce that the local phenomma created by the presence
of the aerofoil in the fluid do not reach them, and that the pressure on these two stream lines is
equal to the outside pressure. At the end, the side cd, constituting the section II of the relative
stream, is a plane cross section taken at such a place that the velocity of the stream haa nearly
taken its original value and the pressure has also nearly reached its original value. These
last assumptions are only a certain approximation. Let us now calculata the increments of
the components of the momentum of the fluid running out of this contour for a unit of length
of the aerofoil, along the velocity and along the normal to the veIoci~.

It is easy to see that the increment of the components of the fluid momentum along the
velocity is equal to

h.5V-h6Pc0S a=hdp(l-cos a)

and that the increment of the components of the fluid
velocity is equal to

hdl%illa

●

momantum along the normal to the
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As these two components of the momentum must be equal to the two component of the
fluid pressure orI our aerofoil, we must have

(18)

(19)

where fJis the breadth of the
foUows that

but, as we have

we easily get the value of
.

(20)

R===kztibP= MP(l-cosa}

RW=k@P=h6V%in a

aerofoil and 6 the air mass density. From the last relations it

Having the value of sin awe easily get the value of the stream height disturbed by the aerofoil:

(21)

For small values of the angle a and negligible values of k=’, we can write

(22)

(23)

.“--
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The value of these formulas, the deduction of which is only based on oertain SESumpt.ions,
Iiee in the fact that they indicate from which quantity depends the apparent angle of deffeo-
tion of the stream and the height of the fluid stieam disturbed by the presence of the aerofoil.
Further, these formulas give values for both quantities of the order of magnitude as obtarned
from experimental

The formula (22) is capable of an interesting geometrical interpretation. II we draw a
plane normal to the resultant air resietanoe l?, we then see that the stream is, so to speak,
reflected on his plane. (See @. 30.)

From these very simple considerations we see that the conceptions developed in turbine
theory, where it has been assumed that the fhid runs off from a turbine wing in the direction
of the tangent to its hailing edge, are absolutely inadmissabIe. The apparent direction of the
stream behind an aerofoil or a turbine wing depends not only upon the direction of the tangent

1F=~P@ Ie4ustsh (theurdtsne&dbeti m.,kf., andw.)
.—-~

x=%--
~&Ki

k&-1/LY
Wothanham

b.1/4~
h+’-~ -~

G

8quantitywhk!hk ofthe mderofwhatex@anea withblpknw indicatsab haneg!tgiblelnfluenccof UMmntwl fmttiezencsof the wings.
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to the trailing edge but upon the form of all the parts of the aerofoil or & wing. The general
reauha to which we are brought in this ekmentary calculation are certainly only of a first ap-
proximation, but they give a rational description of the general phenomena.

We shall now proceed to examine the problem of the apparent stream deflection behind
the aerofoil to a second approximation.

When the stream meets the aerofoil, as the result of the impact which tak- place there
must be a certain amount of energy dissipated inside the fluid. Let us designate for the section
I before the aerofoil, by pO, ~0 and l., the pressure, the flow velocity and the relative stream
height disturbed by the aarofoil, and by p, T and ii, the values of these same quantities for
the section H behind the aerofoil. We shall apply to the fluid between the sections I and II
the momentum theorem taking account of the dissipation of energy by two limiting assump-
tions. The first assumption will consist in considering in the section II the velocity ~= ~O;
the second, in admitting p = pO. l%der such conditions the dissipative force F will be equal
to the drag of the aerofoil for an angle of attack equal to zero, as follows from the foregoing.
For other values of the angle of attack, the coeiiicientjhas to be considered, for a given aerofoi~
and as a function of the angle of attack. In the case of F- FO,“as“wehave F= h(pO–~), the
dissipative force F can be conceived as applied in the section II normally to thatnwction.

Fm, 80.

Appl@g the momentum theorem, in the case of the tit assumption, it k easy to see that
we have: (See fig. 27, and compare with the eimilar equations (18) and (19)).

(24) R=-%Z66P =7L8P-MV cos a+f8bP cos a

(25) l?v=ky8i5P=7i6V Sin a–f~?)p sin a

which equations expreea the fact that the drag and Iift are equal to the corresponding com-
ponents of the variation of the fluid momentum to which are added the mmponents of the dis-
sipfbtiveforce F.

Dividing the last equations by fib~ we get

26) k=_h/b -7i/3 Cm a+f cm a

(27) 7Cp=h/6-fSilla
.

from which follows

sin u=a-. and COSa==; -.

and, since sin’ a+ COS%= 1, we have

(7@$’=~+(h/fi-k =)’

or, removing the parenthes~ and multiplying, we fially fl.nd

(28)

or

(29)

“’=k%t%““”” ““”“““

‘=W””” - ‘“” ““” ““ ““”

—.

—. .—
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By aid of the relation (28) we find

“6-’-’-
and COIISSqUOlltly

(30)
‘“’a ““ ““-”

Neglecting the squares of k= and~ which are of the same order and very small quantities for
actual aerofoils and small anglee of attack, we get

(31) ‘*
(32)

‘“”-

In the case of the second assumption, that is, for p -=po and AC- 8/2(~o’ – V), we have
(see fig. 27 and compare with the similar equations (18) and (19) )

(33) k=abvog==ho8vo~-liaPcos a

(34) i2@V~=h61%in a
or

(35) k== TdB-hl#&M a

.-——

and taking account of the condition of continuity ?iOV. =hTwe get

(37) hJ6–k= ==h~lJ&s a

(38) kfl=hO/b&n a

‘l%king intQ account the relations (s), (15), and (16), we find

SF
Fl–~-~- ~ ;

so that the ratio P/Vo’ is seen to be equal to

(39) g-1–$f: ,———_
o

. ...-

Squaring the relations (37) and (38), adding them and substituting in the last the foregoing
value of P/ VOZ,we find
(40) (hJb-k.)’+kv’- (7i0/byu –&mJ;

from which relation we directly find

(41) h~b.~$

Introducing this last value of h~fi in the equation (38) and substituthg in it for V/V. its value
we find

(42)

..-

-..-.

Finally, neglecting for reasons already mentioned the squares of k= and f, we iind

(31)

(32)
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If we now introduce these last valuw of h, and sin a in the equation (38), we at once see
that
(43) 1% V. “andconsequently-h=h

This showa that the difference between h and 7i0,or between V and V., is only of the ordm
of k=’; that is, of the second order compared with k=, and consequently negligible. we thw
we that in the wake of the aeroftil we mud have n..azrlythe same velocity a in front, & a decreased
pressure.

All the foregoing discussion brings us tc- the following important conclusions. Both
assumptions for negligible values of k=’ andfl bring w to the same mean vrdues of the height
I&of the stream disturbed by the aerofoil and the angle a of the apparent stream deflection,
th- variation in the magnitude of the stream veloc~ty and stream woes section being of the
order of }=2, and thwefore negligible. The expressions (31) and (32), compared with the cor-
responding expressions (22) and (23), give for the height h larger values and for the angle a
smaller vahws.

Let us now see how far the results of tha foregoing discussion are verified by experiment,,
In his” Nouvelh rechrch sur kzretitmce de l’aiT et l’aviation,” (3. Eiffel, on pages 165-170,

gives the results of measurement of the air resistance of an aerofoil disposed in the wake of
anothw. Let us designate by I the aerofoil disposed directly in the wind stream, and by 11 the
aerofoil disposed in the wake of I. In figure 31, Z, is the zero line of the first aerofoil and

.?=

E:--&_
&

FIci.81

ZII the ZerO line of the second, VO,tie v~city of the stream before tie fit awofoil, and i and
i, the angles of attack of the tit ~d second aemfoils relative to the velocity ~o. Eiffel shows
that for the aemfoil H tie h r~ist~ce iSsuch hat the @e of attick of that aerofoil, instead
of being equal to & appears to be reduced to the value & smaIler than i. ll~el calls & the
‘f apparent” incidence and & the ‘(real” incidence. Eiffel gives the corresponding wdues of
ia and L for different angl~ ~ between the mO pk- of tie two aerofoile; and these We
reproduce in the Table A) only r~~i~ ~ h ~gla to the comeapouding zero lines.

TABLEA.

t .—— .—

ml-“...-,, ‘.
L ~. a L k a L & a“

— — —
6* y .......... .......... .......... .......... .......... .......... .......... ..........
7 1“,4 8>: ; -0,4 v, 4 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1! : 2: ‘
0,6 8“ -1’,6 4;!

la
2;

11 .. . . . . . . . . . . . . .. . . . ; k:
-0,4

U U
17 ......F..IIIIIIIIII 1111111111 18 $j $: j !/; #

—,- .—-.

—-->...-

Let us now conceive the stream velocity behind the fit aerofoil as deflected and having
the general direction ~. The angle of attack, & is the angle between ~ and Zu, so tbatf if a
is the value of the stream deflection angle, we must bqye (see fig, 31)
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In the Table A, by aid of the wdues of {S and L, the values of a are calculated for dtiexent
values of the angles of attack i of the aerofoil I, and three different values of the mgle ?, 2°, 4°,
and 6°, respectively. By using the valuea obtained, in @me 32 are plotted the curves of a= ~(i)
for the three values of 7==2°, 4°, 6°. It is easy to see that all the plotted points define well
enough a curve, which means that behind the aerofoil 1, we really have an apparent stream
deflection depending only upon the aerofoil 1, and its angle of attack, i. The angle of mutual
inclination of the two aerofoils has no influence on that phenomenon, as ought to be expected.
The aerofoil, II, has simply to be considered as disposed in a stream deflected by the aerofoil 1,
whose veIocity in magnitude is nemly the same as in front of the aerofoil L Knowing the rek-
tion between a and i, we can euily calcuIate the air resistance of any other aerofoil, as the mrofoil
II, disposed behind the aerofoil I.

ml. 89.

bt us now calculate accordbg to these last data the vahm of the coaflicientf. !l%is cal-
culation is made by aid of the formula (32), in the Table B, where are reproduced all the data
concerning the aerofoil 1, which are necessary for that calculation.

TABLE B.

~

r ‘.H. . .._“
.

$ f-k+ fh

---
i a“ aMdiauti b k

.-~
s“ r,s } 0,044 0,176 O,mss
s

0,M3SS*,0 I O,oio 0,2s3 p3& O,om
Op!ca! c&

6,8 O,(M O,m O,um 0:013
H

0:42

!$ \
0,476 ‘

17 Ij% 0,533
0,01S6

$& ?$l%
$8

&OZ?4 ,
..—

The values of the c-o~cient f obt~ed me plott~ in tie 32, where, for comparison,
is also plotted the curve of k.. In the last column of the Table B is also calculated the ratio
off to k=. These last~values me wry suggestive. 37hey show that the dissipative force F

.——
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decreases when the angle of attack increases, and that for mean vah.waof the last it is equal
to nearly one-half of the drag.

Finally I will remark that the energy dissipation, of which account was taken in the
foregoing, and to which corresponds the dissipative force F, is that dissipation of energy
which takea place in the immediate neighborhood of the aerofoil. It is evident-that all the
energy spent to move an mrofoil in air is dissipated in the surrounding medium; but one
part is dissipated in the direct neighborhood of the -aerofoiI and corresponds to skin friction
and turbulence connected with it, which we evaluate by FVO; and another part is dissipated
by the oscillatory motion of the air left behind the aerofoil-that is, by the damping through
viscosity of the fundamimtal and secondary wavea created.

The experimcmtal study- of the apparent stream deff~tion behind the aerofoil in the

m. 83.

(44)

or

(46)

tight of th~ ‘ideas here developed is very important for many
problems connected with the design of airplanes, propeller, and
turbines. It must, howevar, be remembered that we have to do
only with wuzpparcnt stream deflection, the real motion of the
fluid behind an aerofoil or turbine wing being generally periodical.

Short review of some propositions omvortioes.-Before
proceeding to examine the question of the tip vortices and the
fundamental and secondary wave, I shall state briefly some well-
known propositions on vortices in general.

Let us consider a smaIl circle of radius r rotating in its phne
with an angular veloci~ a. Each part of the contour of this
circle has a vdocit-y equaI to ru. If we now calculate for the
contouf the tide, the quantity which in hydrodynamics is
calIed the cumulation-that is, the integral of the velocity v along
the contour of the circle-we find (see fig. 33)

SSI- dI= %rdv- 2rr%=u 2udu
o

Ic!!=~ ---

where 1 is the circulation along the contour of the circle and du the area of the small circle.
We therefore see that the angular velocity u of a rotating circle is equal to the circulation 1
divided by the double of the surface of the circle. “

Let us now consider a fluid element having the velocity (u, W,w) at a point (z, y, z) in a
moving fluid mass. Let us draw through this point the axes X, Y, Z paralkl to a system of
triorthogonal immobile axes and calculate the circulation along an elementary contour with
sides equal to dx and dy, as shown in figure 34. We have

The quantity

(46) )+(g.* ..&-%

which we designate by ~ is crdled the component of the vortm with reference to the Z axis.
(Compare formula (45).) In a similar manner

are the vortex component with reference to the X and Y axea. We have

d-ti=~+uva+ti~



The doubles of the vortex cmmponenta%=, !@, 2UZare the determinants of the matrix.

Ibt)l.1)
%= %v 2U*

As a consequence of continuity, the following proposition holds for vortices:
Lfwe have a vortex motion at one point of a fluid, we must ntiessarily have vortax motion

at all the points of a line going through that point. Such a line of small cross section dr at each
point of which the vortex has a finite value is called a wmtmfimmt. The quantity

(47) % du=I

is called the infendy of the vortax fila-mmt. A vortex flament can nevw begin or end in a
fluid. It must be a closed contour or have ita ends on the boundary surface of the fluid. The
cross section of a vortex flament can be variable, but its intensity is always constant along the
whole fihunent-that is to say, for a vortex flament, we have

2Udu=Chst.

—

——

The vortex flwnent is always constituted of the same fluid particles-that is, the vortex fllsment
moves with the fluid. A system of vortex fihments disposed close togethw form a vortex
tube.

Let us consider a fluid mass in motion with a vortex filament in it, and let us draw a surface
across the fluid and take a contmr on that surface. The circulation aIong the contour is equal
to twice the snm of the elements of the surface multiplied by the componen@, aIong the corre-
sponding normal to the surface, of the vortices on that surface. (See fig. 35.)

(43) ‘“svb’-’ss~”
—

where tin is the vortex componmt normal to the considerwi surface. This last relation con-
stitutes Stokt#s theorem. In tieappli~ation of this theorem two casea have to b~distinguished.

If the contour, by progressive ~s, cm be reduced k a point without leaving the fluid,
the space occupied by the fluid is said to be “simply connected.” If, imsidethe space occupied
by the fluid, we have solid bodies or holes crossing the fluid mass, not every cuntonr in the
fluid can be reduced, by shrinking, to a point; and the space containing the fluid is said to be
“not simply connected.” Jn a simply connected space, if the circulation along the contour

—

has a finite vaIue it means that vortices are crossing the inside of the contour and the double
of the sum of the components of the vorticts normal to a surface containing that contour multi-
plied by the cmrespond~u elementi of the surface is equal to tha circulation along that con-
tour. In a not simply connected space a finite value of the circulation can also mean that solid
bodies or holes are crcssing the inside of the contour.

In a fluid mass in motion with vortires in it, the velocity at each point depends upon the
distribution of the vortices. Each element of wh vortex contrkutm to the velocity at each
point. The components of the velocity at a point due to a vortex element ds of a vortex fla-
ment of i.ntansityI is equal to (see &o. 36) —

where r is the distance between the point considered and the vortei ekmmt, and q is the angle
between ds and r. The direction of the velocity d; is normal to the plan~ ctmtaining r and tfs
and has the sense of the rotation around d8 in the sense of the vortex. The velocity at a point
is the geometrical SUMof the veIocity components due to all the elements of the vortices con-
tained in the fluid.

In the case of one single rectilinear vortex filament in an infinite fluid mass, by reason of
syznmetqy the velocity is the same for 8]1 the points at the same distance from the vortex ~
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we therefore calculate the circulation along a circle contained in a plane rmrnml to the vortex,
and having its center on the vortex, we get

I=&x3u-9mv
90 that

(50)
I

v “G
,.

That is to say, the fluid velocity for points around a straight vortex filament is equal
intensity 1 of the vortex divided by % times the distance r from the point considered
vortex. The vortex itself does not move.

to the
to the

Let us consider now the case of two straight parallel and infinite vortices of equal intensi~
1 rotating in inverse senses and contained in an idnh% fluid mass. In iigure 37 the vortices
are represented in cross section and in plane, and L is the distance between the vortices. We
will refer the vortices to a system of triortihogonal axm X, Y, Z as shown in ilggre 37, the origin
be&m in the middle between the vortices and the Z axis being perpendicular to the phme con-
taining the vortices.

Let us first calculate the velocity at the point A, at the distance x from the origin O, due to
one of the vortic~. Applying the foregoing formula we have

JMJsin,
u= 4%P

-co

and from figure (31) we essily see that we have

y=r 00s q; (L/g —cc)=rsin .-
from which follows

and

Substituting thse last in the forego&U integral we get

and integratiog we finally have

&msidering z equal to Q% we will iind the velocity of one of the vortices produced by the other
which is equal to

(51)

Thi9 is the value of the
the velocity between the

(52)

velocity with which bo h vortices mo;e parallel to the Z axis. For
two vorticx produced by both we wiU have

.-——

.—.

T-. .

.—

—



For points in the middle between the vortices the velocity is equal to

(53) V+4U

For other points betweeu the vortices the velocity foIlows a parabolic law, and, as a first approx-
imation, csn be coneidercd as nearly uniform in the middle part between the vortices when the
cross sections of the vortices are small relative to the distance between them. (see fig. 37.)
We therefore see that the velocity of the fluid in the middle between the vortices is exactly equal
to four tirrm the velocity of the vortices themselves and that the velocity of the fluid between
the vortices relative b them is equal to twice the velocity of the vorticw themselves.

We have now all the neceesx~ refcu%ncesfor the following:’
The tip vortioes. —Let us ccmsidar an aerofoil moving with a constant and uniform

velocity ~ in a fluid mass and let us designate by dz an element of length of the rmrofoil, z
being the distance of the element of the aerofoil considered from its middle cross section. (See
fig. 38.) Let dR, be the lift corresponding to the element of the aerofoil considered. The
quantity

d~
dz

-...“”

is the lift per unit of length at the distance z from the middle cross section of the aerdoil.
According to Kutta’s theorem (see Note 1) we mtit hive

-.

(64)

so that

(55) I-$%
.-—

is the value of the circulation along sucha contour as I, embracing the aerofoil at the cross
section considered. (We %. 38.) Whm z variw, aid until W6 do not approach too rm.arto
the tips of the aerofoil, the value of I is nearly constant. & a first approximation for the
mean value of 1 we cm take

(56)
%%

where L is the length of the aerofoil. Let us now move our contour to the tips of the aerofoil,
and just before the value of I begins to change we let the contour follow the fluid in its motion.
Accordin@o a theorem of William Thomson (Lord Kelvin), the circulation along the contm.u
moving with the fluid must be invariable, so that when the contour reaches such a position se
~ (see @g. 38) the circulation will have the same value as in the position I. But in the position
II we have no solid body inside the contour, and consequently we must, according to Stokes’s
thmrem, have a vortex traversing that contour.

W%80 come to the conclueim thut vorticfx mud nece88arily run o~jbn the tip8 of aewfoile,
and that the mean value of the intensity of this vortex must be

(57)

. .

According to this statement, the tip vortices disappear only when the lift vanishes; that
is to say, when the relative wind blows on the aerofoil along the zero plane.

HaviQg wtablished the value of the int&sity of the tip vortices, let us now consider their
influence on the air resistance of the aerofoil, For the simplicity of the tmphmation we will

.-..,. .- =:.:-77:,=
1Fcr momdetelkdmferenmon~ MEthe ckusimltrcstim on mechfmiwby Pal .&en,’~ Trdts de mdque ratfonnallqt)TOIM

~ @MP.~, p. S89,audp. 476,f ~ andah “Aarm18uUCJlRTheoryaudEx@m@n by W.L. Cm@ andH. L8vY,@p. III,
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put ourselves in the simplest case and will assume that the tip vorticts are of small cross section
compared with the Iength of the aerofoiI, so that they can be considered m vortex filsmeats.

If we follow an aerofoil moving with a constant valocity ~, we see that the tip vortices
run parallel to themselves, as should be the cese for parallel vortices rotating in inverse senses.
The velocity with which these two vortices displace themselves in the stream, at a dkfame

z

z

—--

L!
mt. as.

from the aerofoiI where the infiuence of the last cen already be negleded, is, accordirg to the
foregoing, equal to

(58)
I .. .. . .—.—

‘*EZ
and is normal to the plane containing the vortices. The motion of the fluid betwem tie two
vortices in the middle part relative to the vortices is equal to

..—
.——

(59) h-$

So that the mean value of the flow velocity between
equal to (see @g. 39)

7+2;

the tip vortic= relative to the aerofoil is
-—

——

~---- -
me. 39.

‘We therefore see that as a fit approximation we can Cumider the tip vortices as bisecting the
angle which the metm vidue of flow velocib between them makes with the original direction of
the stream running on the aerofoil (see ~. 39). We also see that the angle of deflection of
the tip vortices downward is equal to

.O!u
(60) ‘S=v
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Substituting the value of the velocity u by its expression (58), and in the last the circulation 1
by its value (67) we find

(61)
.akb
‘Z-* “- ““ ‘“

.- .-

If there were no other circumstances producing the deflection of the stream downward, this
would be the correct mean value of the deflection angle.

If now, for the calculation of the part of the drag due to the tip vortic~, we should apply
the momentum theorsm, assuming &at the mean value of ,the velocity behind the aerofoil is
as a iirst approximation the rssultant of the velocity V of the aerofoil and the velocity %-
I/TL,we would find, according b the calculation already made on page 34, that

sine
2

G k; ~_ti,g “: ‘“ -’ ::: -, ,,., ,

‘r

—-. ..-

2

and substituting in the last expression the value of sin ~ given by (61) we would get

.

where by 8 we have designated the quantity

* -k---
or, finally,

“ (62) m..
. . .

which expression gives us a fit approximation to the value of the drag due to the tip vortices.
If we compare the values which the last formula gives for the drag with those values which
direct experience shows for actual aerofoile, it will be easy to see that the drag of an aerofoil is
much larger than that calculated by the formula (62). 1 We afterwards see that the value of
the drag given by the formula (62) decreases with the aspect ratio of the aerofoil and is equal
to zero for an infinite value of the aspect ratio. These hst conclusions are very important.
They first show us that that part of the drag of an aerofoil which is due to the tip vortices
practically disappeam for a value of the aspect ratio greater than a certain one. We afterwards
see that the most important part of the drag, practically the whole, for a suflicisnt value of the
aspect ratio, is due to other circumstance than the tip vortices, which circumstances are, as
we already know, on one hand the energy dissipation in the direct neighborhood of the aerofoil––
that is, skin friction and turbulence-and on the other, the fundamental and secondary wrmw.

We can now perfectly conceive the importance of thaphenomena which take place on the
surface of contact of the solid and fluid bodies. We can not expect to be able to calculate the
drag of an aerofoil before ti.phenomena are fully understood, as has been already stated in
the preamble.

Imawfestwaytumitktiaidliiii: ““” ““”
..-,.! ‘&“&. .*,.=;+ ., ~,;~

ROmwklng that in the formula(6S) *@ fsa WY small quantitywem wdti



AN INTBODUOTIONTO THE L&ViSOF Ah tiISTANCE OF AEROFOIiS. 129

AU this discussion brings us to very, importsnt conclusions. We have fully understood
the influence of the aspect ratio on the drag and, so to say, the mechanism of its influence.
When the aspect ratio incresses, the part of the drsg due b the tip vortices practically disap-
pears, the influence of the tip vortices becoming negligible. The Isst fact taking place, the
shape of the tip vortices is also negligible. It follows that the shape of the tips of the aerofoils
has a negligible irduence on the air resistance of the aerofoil, if only the aspect ratio hss a
sufficient value. 1

We can now formulate the two following propositions:
L The tip vortieg lime an @%.umce on tb drag of the aeroj%il; but this d+mwa8e8 with tb

h3WZ8e Of th (Mped ~ath (3n.dpM&.c@I di8iZpp8UT8f~ a c87’t2zi7t du4 Of tb W.

2. Wlk3n tti aepect ratio of an aerofm7 iim a 8u@i9W vulue, the in.wme of tik fm of th
tip8 Oj the Wojoil on tht?air n&tUnc4 is T1.@gm.

These two ls9t conclusion me in full agreement with all experience with aerofoik up to this
time.

We have been able, by the analysis of the tip vortima phenomenon, to understand the
reasons which require for the mrofoils a certain value of the aspect ratio and have deduced
the alight influence of the tip forms when the aspect ratio has a sticient vaIue.

Short Review of the Properties of Systems of I%mdlel Vortex Rows.—We w-N call
uorta row.a system of an infinite number of infinite rectilinear paralIeI and equidiatmt vortices
of infinitely small crow section and of strength 1 equal in magnitude snd sense, disposed on one
straight he. We fl give a short retiew of the properties of q@em8 of Padel vortez row8,
which play a very important tile in the phenomenon of fluid resistance.

The fluid mass in which the irdinite pemdlel rectilinear vortices are considered is sssumed of
infinite dimensions in dl senses, having in intlnity a velocity equal to zero, or moving ss a whole
with a velotit y constant in mrgtitude and direction, inde-
pendent of the motion which can take place inside the fiuid. z

We consider the whole system of vortices cut by a plane r
normsl to them and their mutuaI positions defined by the

0

positionsof theii sections in that plane.

-/

0

We wilI first consider in thair general outlines the condi- 00
tions which must be satisfied by a system of in&ite paralkd

-.---.; flfiyj ~

and rectilinear vortic~ in order to maintain an invariable ~“i.
contlgurat.ion.

0;0

In figure40 are represented the sections of a system of J?

vortices, ss above mentioned, cut by a phne normal to them. ~I& 40.

The vortices are sssumed to maintain for one moment an invariable configuration and are
referred to the orthogonal (X, Y) axes moving with the vortex systmi. Let us concentrate
our attention on one of the vortices of the system, say A, with the coordinate z and y, and
consider this vortex A undergo&~ sn idnitely small displacement 3Xsnd @ relative to the
other vortices, the lsst maintaining their configuration, and let u and v be the components of the
velocity of the vortex A. As is well know-q u and v are the components of the veIocity pro-
duced at the point z, y by the other vorticas of the systam. The displacement of the vortax
A will produce the variations du and dv of its velocity components, which wilI represent the
components of the velocity of the v-ok A relative to the other vorticas, and we wilI have:

du=g &z+&y

—

—.

—

The vortex A will be stable for every virtual displacement (8x, W) provided du and dv, reapec- —.
-. —-——._.

l~d Kthetips&mtk-~~-~-tid@~ ~titi~—~~~
1670S0-S.Dec.!107,~!il
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tively have signs opposite to the signs of the displacements 6Xand &y. But it is easy to see
that, so long as

au au ?Yv av

have finite values, it is always possible to imagine a displacement (&E,fry)for which du and
do will have the same signa as i% and &y. In other words, a stable displacement of a single
rectilinear vortex among others maintaining their configuration appeara as impossible.
But in the case of

(63)

we have
du=o; dv=o

for all intlnitely small virtual displacements of a single vortex, Under such conditions the

vortex considered W be in a stab of neutral relative equilibrium among the other vortices.

Aa for the space between the vortices, we must have the equation of continuity sattied;

that is,

as well a9 the vortex intensity equal to zero

.

au iw
@j-G-o”

The four conditions (63) are reduced to two conditions. It is thus sticient ta have two of
the quantities (63) equal to zero in order to have a neutral state of equilibrium of a single vortex.

It is easy to see that the conditions (63) mean that the velocity (u, v) must have a maximum
or minimum at the point where the vortex A is disposed.

When the relations (1) are satisfied, a small displacement of the vortex A doea not produce
a change of its velocity. But let us consider the influence that the displacement of the vortex A
can have on the other vortices of the s@xn, say on the vortex l?, for example. Let us imagine,
first, that the vortex A undergoes a displacement 3r along A-B only (see Fig. 41), Let I be the
strength of the vortex A. Before its displacement the vortex A was producing in B a veIocity
normal to All, that is, b r and equaI to I/2m, which, combined with” the mdocities that the
other vortices of the system produce in B, keep this vortex in relative equilibrium, After its
displacement, the displaced vortex A will produce in 11 a veIocity equal to 1/% (r+ &r). We
thus see that we can consider the displacement of the vortex A as producing in B an additional
velocity equal to

(64)
I 11——. ——

27r(?’+dr) 2m ~&6T

which is normal to r (see Fig. 41). In the same manner it will be easily seen that-the displace-
ment 8n of A normal to r wilI produce in B an additional velocity directed along r and equal to
(see Fig. 42) .
(65)

If we now let 13displace itself in the direction of the additional velocity communicated by
the displacement of ~, we will at once see that such a displacement of B will produce in A the

additional velocities –& K3ralong r – ~ K~nalong the ‘normal to r where K is a factar of pro-

portionality, which will be exactly inverse to the displacements& and 6n when the two vortices
considered are of inveme sense (see Fig. 43), and which will have the same senses as & and tin
when the two vortices considered have the same senses (see Fig, 44).
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The foregoing preliminary discussion is given here only to show the nature of the qwstion.
It witI, however, allow us to arrive at a generaI understanding of the stability conditions of
vortex rows.

Let us consider first one vortex row, i. e., all the vortices in the same sense (see Fig. 45).
If we displace one of the vortices of the row, say A, ilrst to the position A’, considering the
other vortices for one moment immobile, it wdl be easy to see that in the position At this vortex
will get from the other vortices an additional velocity in the sense of the arrow 1. If we disp~ace
this same vortex tu the position A“ itwillget an additional velocity in the sense of the+arrow 2.
Thus for neither displacement will there appear an additional valocity directed toward the
original position of A. If we now consider the additional velocities which the vortex wiUreceive
from the displacements of the other vortices produced by the displacement of the vori%x ~,
it dl be easily seen from the foregoing, since sJI the vortices have the same sensa, that the
additional velocities will only increase the original &placement of the vortex A, Thus one
vortex row appeam as an unstable configuration.

Let us now consider two paralh4 vortex rows rotating oppositdy in each row. The
additional velocity given each displaced vortex will consist of the velocity due to its own dis-
placement and of the velocities this vortex get.adue to the displacements of the other vortices
produced by its own displacement. This last additional velocity which is caused by the
vortices of the same row aa the vortex considered, has a destabilizing action, as all the vortices
of tha same row rotate in one sense, but the additional velocity caused by the vortices of the
other row will produce a stabilizing action, as they rotate in inverse sense. We thus can conceive

--------+i==!);*~-:3-----9--
----!%<4------s’’’’3--

Fm. 47,

that two parallel rows of vorticiw with inverse rotation in each row can have a stable con@wra-
tion. The investigations of Karman have shown thatitwo parallel rows such as repremnted in
Fig. 46 can not be stable, but two rows in quincunx as represented in Fig. 47 can be stable for
a certain value of the ratio d/2Z= h of the distance d between the two rows to the distance 21
between the vortices in each row, The most probable value of A for a stable configuration of
two vortex rows in quincunx seems to be I

(66) $= A=0.283

If a single vortex row could be stable it is easy to see that it would be immobile, because
the velocities which all the vortices communicate to one of them mutually balance, As for
a quincunx arrangement of vortex rows, it is easy to see that it will move tith a constant
velocity parallel to the general direction of the rows [see Fig. 47) because each vortex of one
row will receive no velocity from the vortices of the same row, but from each two vorticss of
the other row, disposed symmetrically relative to the vortex considered, it will receive a resultant
velocity directed along the direction of the row.

Let us calculate the value of this velocity. Foi that purpose let us fit calculate the
velocity produced by a single vortex row in a point P. Let us refur the vortax row
. . ..--A’8. A’1. A1, A*, A6------ to a system of orthogontd axes X’O’ Y’ whose X! axis is paralhl
to the vortex row considered, and let us also consider the system of axes XO Y paralkl to the

1V.~ommnhespublklmd two pepaa on thetqueatfon. In M firstpaperWber &mMechenkm
2.

u deuWidemtendqdeneinbew@8r
_ fn* F1ufrkdt ~~” N~t~ VUda ~en Q=~ derWiwr.whakmmCottIngerr,ml,P.W,mmmnIonndhr
~thevdna0.387.N. Jonkowskihenmsde someexpwfment~wh!ohMm to verifythh vslue. Seehfs “Aerod~mfquq)J Pads, 1916,p. al% In
Ids secondpaper “Ubw der.iMwharhmris des Flnm@eft~und LuftwMeretend#’~ydkfdf90h0ZefWhrift,JenusryIS,191~?hrmentide fo
h the V* 0.288andprodrrcfmthem=mltaoferperlment+* verifyingW I* value. TM questfontluu domendafurtherfnvestfgatfens.
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system X’O’ Y’ but whose origin O is midway between the vortices All and A (see fig. 48). Let
(& ~) be the coordinates of the point P in reference to the axes X’O’ Y’ and (z, y) the coor-

. dinatw of the s-e point in reference to the X(2 y axes. ‘I’he coordinaw of the origin O ti
reference b tie ~ea X’O’ Yf will be ds@a&cl by (&j To). we have

The coordinates of any vortex A of our row in reference tQ the X’O’ Y’ SXE+Swill be designated
by (a, b). & is well known, we have 1

and where u and v are the components of the velocity produced in the point P by the vortices
of the row considered, I the intensity of each vortex of the row.

I’m.4a.

Jor the vortices of our row disposed eymmetrioally ralative to 0, the quautity a has for vakes:

------- . . ----- ------- --.---- -

Thus
Z–q-(fc-z)+iy Z—a’l==(z+z}+iy
z–q=(x–3z)+@ z-a’*= (Z+3Z) +iy
z–aj==(z-5z)+iy s–dc-(z+5z)+’iY
------ ------ -- -c------ ----.--

and, consequently,

~+~”
2(x+iy) 2p

Z–q Z–al ~-FP

with

p==x+-iy
we thus see that

~Seaforexnmph ‘Tdta de Mec8nfqueBatfonelIejnby l’auIApDo~VOLu p. 481.
. . -—-.

-.
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Tfwe now remember the well-known formula

k-m

2( 4s20
.

tge=
~-1 2k–l)%?_ Ze)z ““”” “““- ‘-”” . .-.

..—=

and identify this formula with

k-m Ii-m

z 4. ~

# - (2K 1P - –$ E
—-, .w,. ..n -... ._

k-1 ,-, (27C- 1}’+$$

it will be easily seen that with

%f

we get

ancl thus

or

introduchqg the notations

%lx;@-&

‘llmae hut formulae constitute the general expressions for the components u and v of the velocity
at a point P (& q) produoed by a single vortex row.

I will here note that, sines for

(71) bh’(n-%) 5-1/2.

we have
V=o

. ,-. —

- ._.

-—

. . ..-—

— -—

for any value of & a single vortex row hae around it snob a flow that at tbe dist~ce (~– n~)
&x@ by tly r~@ioq (71), W9l.wve twq streamlines that are straight lines,
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If we now apply the formulae (69) and (7o) to a system of two vortex rows in quincumx in
order to find the veIocity communicated to one row by the other, ss we have ~=& for each
vortex, we flud

V=o
and

(72) w=+& ;Omo)=+gh&
where

?l-qo=d

and for the stable configuration of two vortex rows in quincunx with h =d/21- 0.283 we find
for the magnitude of u the value

(73) 1
‘—0”35 z

1

&#
m+.49.

Let us further calculak tie momentu q ~~ti per tit of vortex length that corresponds
to two vortices A and B of equ~ ~t=ity ~ mtatbg h ~v~e SenSSSwhich we will refer to
the system of XO Y axes. (See Fig. 49.) It is easy to see that the component of the momentum
of the two vortice9 in the direction AB is ecpd to zero. Because if we consider a fluid strip
paraUelto the direction of AB such ss b,b. tie component of the momentum along the direction
of AB of the fluid element situated at a petit such as pi is equal and directiy opposite to the
momentum of the fluid element p’1 spmetical to PI h refermce to the axis Y (see Fig. 49).
The component of the momentum 81OW tJM dirmtion of A.B wtih corresponds to the whole
strip bl~t is thus equal to zero. As the same takea place for any fluid strip parallel to AB,
the resihant momentum corresponding to b two VOfiCSS A and B will be normal ta AB.
For the calculation of this momentum, let us divide the fluid into strips normal to 0 such as
bab,. The component of the momentum of the fluid elem-entsituated at a point such as p,
along the normal to All, and due to one of the vortices is equal to (see Fig. 49)

——
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and for the whole strip considered

when we note that

We thus find

tt I
I 1
! I

!

+-00

‘%xar@ &-z- 7j

-m

.,—..-. ..-.

.. . . .::s.. -----
7.

--

1

,..

which qusntity appears to be independent of the coordinate x. It will be easy to see that this
last momentum is positive for the Vorti ~lor all the strips at the Ieft of l? and negative for all
the strips at the right of 11. The inverse takes place for&e vortex ~ (see Fig, 50). Thus when
we calculata the total momentum q, the momsntum of the strips outside ~ snd B will mutuslly
cancel, and there will be left the momentum of the strips between ~ and B. We thus find

—

.-

where h is the distance between the two vortices considered.
Let us now consider a system of two paralleI rows of vbrticea in quincunx. We can always

conceive this eyetam as built up by the superposition of two ~~enticil vortex row systans with
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the intensity of each vortex equal to 1/2. (See Fig. 51.) To each pair of vortices of intensity
1/2 will correspond a momentum normal to the line joining them and equal to

q=ah ;

If we consider the sum of all this momentum for the whole system, it is egsy to see that we will
get ody a resultant along the general direction of the rows. Each pair of vortices of intensity
1/2 will contribute to this resultant by a momentum equal to

(75)

and the rwdtant momentum counted per vortws of intensity 1 and per unit of length of the last
ti thus be WUfd to

ad;

‘T
-------“--- . -::’’--------f&--’-----

‘y ‘. y!m, ‘@:L______@f—----------—-
# ~ ~

2

s umming up from the foregoing all the data relating to a system of two parallel vortex
rows in quincunx we see that-

The quincunx system maintains a stable ccmtlguration for

(76) ‘ :
= 0.283

The system communicates to itself a velocity paraUeI to the generaI direction of the rows
equaI in magnitude to

(77) ~==~ @h ~=@.35 ~

The resultant momentum of the system is directed along the general direction of the rows
and counted per vortwr and per unit of length of the l=t, is aqusl to

(78) til 5

The Fundamental and Seoondary Waves. —We will now make an attempt to calcu-
Iate the order of magnitude of the fundamental and second~ waves. &we have seen in the
foregoing, the fundamental wave will be produced by the vortiws in quincunx buiIfifrom the sur-
fam of discontinuity which are, in the limiting case, the boundaries of the wake behind a body
or aerofoil. The secondary wave is produced by the vortices in quincunx built from the
Kimhhoff-Imrd Ray&h surfaws of discontinuity. In some cases, in all probability only one
of the wavea will be formed; in others both waves will appear Simultmeousdy and one will
propagate itself in the other. The study of the conditions of formation of the fundamental
and secondary wav~ demands furber deep investigations. I d here wnsider only the cases
& Wticll W* !@Nl Of wave appears separately.
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Let us consider a solid body or an aerofoil disposed in a uniform fluid stream having a
general velotity equal to V. If a system of two parallel vortex rows in quincunx is assumed
to appear behind, the momentum counted per unit of time, corres~nding to the vortices
appearing, will be equal to the momentum per vort~~ m~tiplied by the n~ber Of VOrtiCCM
formecL As the vortex in the flow will have a velocity equal to u the number of vortices
formed will be equal to

~v;~ ,

and the corresponding momentum equal to

(79) &++

To a first approximation we can assume the drag of the body or aerofoiI considered (counted
per unit of length) equtd tu the last quantity—that is’

(Ho)

or, introducing for u and d their values in (77) and (76), we get

(81) ~=5=0.283 +(1 -~;)

The following considerations allow us to w%nate the value that the intensity of the vortex
in quincunx built behind a body or aerofoil may have.

Fm. 62.

Let us consider in a fluid flow a surface of discontinuity, or vortex sheet, on both aides of
which we have a finite velocity difference equal to w’= VI– V’l (see fig. 52). For a contour
such as (7drawn between two pointi A and B of the surface, whose distance is 2?, the circulation
will have the value

21VI–21 v, =21 (Vl – v,) = 21W’

T7%ennow the VOrteXsheet considered goes over into a row of vortices whose mutual distanoe
is 21,in the ideal case the circulation will remain invariable, and if a vortex is built between the
points A and B, the intensity of it will be equal to

[s2) I=21w’

Thus in the case of the fundamental wave we will have

(83) Wt=w and 1=21w

where w is the mean wake velocity; and in the ‘case of the secondary wave we wilI have

(84) w’= V and I=21V

the fluid inside the Kirchoff-Lord Rayleigh surfaces of discontinuity being at rest and the

-.

v-~ocity on the surface being eqmd to ‘v. -

1The ‘ivhoIepnrpose of thfS paw h to ~ M Of ~ quite ~cm~t=v. ~t b WW I h~w ~low~ mysefftogke theforegoingformuk,
whichk not qutteerect,the aow@@dtr WJhd tie bc@ Md thePr=~ ~~~ fn~ ~ b~d ham @n n%d~~ me WHII
comm!tted usingw formulacm reachw w cent; t~t fewhy ~ formti @VH WY ~id~ ~t$e ader ~ m,+imttudeof the quantltfeeconefdemd,
which ie the only thing we wlsb to reachheze.
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lktroducing the value (82) of 1 in (81) we find

‘Zb=oy’g’ “2%’(’-”@)
and thus for the wave length Z we get

Thus at first approximation the length of the fundamental wave appema equal to

and the length of the secondary wave equal b

(87) 2h4i,4 k=b

To give a concrete example, let us take an aerofoil with

6=!2mt.; %==0.05

and assume the ratio w/V to be of the order of 0,01.1
k such a case, for the length of the fundamental wave we find

2’s0 ~g:”:lo “p’ mi..
and thus

d= 0.283. 2ZBI0 W.

11’orthe length of the secondary wave we get

2’-0.1 . 5.4=0.5 mt
and

d@.15 &.

Secondary waves have been observed by several experinmntators, and are fully of the
order of size given by the foregoing formulae. But fundamental waves, as far as tie author
has knowkxlge of the subject, have never been experiment-ally observed. The scale of thk
phenomenon shows the great interest of its experimental study. The possibility of fie for-
mation of the fundamental waves explains the action which bodies moving in a fluid may
have on each other when they approach one another, as has been observed in some cases be-
tween airplanes and ships. The phenomenon of the fundamental wave indicates also how
complicated is really the comparison of the fluid resistance of a body moving in a free and
in a closed space. I will, finally, mention once more the fact that the phenomenon of the
fundamental wave is a consequence of the fluid viscosity and can not be conceived in an ideal
fluid.

The Pressure Distribution on the Surface of the AerofofL—One question has
been left so far without discussion: It is the prewre distribution on the surface of the aerofoil.
The general outlines of this phenomenon are easy to understand. The velocity of the flow
running on the aerofoil is increased above the aerofoil and decreased below, which has as a
direot consequence the’ decrease of pressure on the upper surface and the increase of pr~e
on the lower surface of the aerofoil But we are not able to make the exact cah.dat,ion of the
prassure distribution along the surface of the aerofoil. The prmswe dia~ibut.ion iS pWY
closely connected with the phenomena which take place on the surface of contact of the fluit
and solid body. Until some new conception throws a new light on these phenomena, it does
not seem that the pressure calculation cm be started with any success. The general ideas
which were developed in the preamble indicate the way in which the solution of the probhn
will probably be found.

—-

—.

.— -—

Ime V&In of UVVMccaamtadwiththa tine ofk. TIM@mentsq comfderat$msdevebpd futit h- @ @ chptw mayb WI@
to tlndth9II@@ oa’dwofm8@ft@eOfk ~dw/ F’,



NOTEL-Genersffzatfonand General Discnssiort of Kutta’sTheoremon Chculatfo~

The circulation theorem which I have in view in the pr~nt note wsa firet indicated fors psrtfcndsr csse by W. hf.
Kutta.1 Soon afterwards, Kutts ~ and Joukowski a have reco@wl the generality of this theorem. Thfn theorem
is announced se followu:

men a rettilineorandun~mn$uti ament,havingat i~n~ the velocity7, Jow8 nonndlu to the genautri.v of an
i@inite cylinderfrvm any aechim,and whenthecireulutionalong a contour embracingtheqhder and eituatedin thepfune
of oneof itdorthogonalwctiorwha afmiti value 1. thecomporwntRv of theresultuntform of the@id on the cylind?r, tahn
along thenormal to theveforitfland refmwi to a unit length of h la8t,ie equal to theproduct of theveloci&V, thecimuhkm
I and theMty of the@d: The surwfrom Rv to ~h coim&Jmtwith the wnee of the cirailutiim.

According h thie th- the lift produced by a unit length of the cylinder cotidered ia expressed in magnitude
by the following formula:

RV=6VI
Weshalleetablf& two fundamental ancl qui~ genemlrelationsfromwhich the cfmulatfon thewmm wifl appear SEa
particular case.

~y------
/.

FRI. 1.

L&us embrace the Mnite cylinder considered by my contiur _ fn the plsne of one of its orflM@Isl
sections, Let lf%e the velocity of the flufd at the point (Z y) of the contour; u and o the component of the velocfty
Walong the axeE(see fig, 1); dz snd dy the projedime of tie dad d the contour on the axes. Let ue designata by
X and Y the components of the remdtantforce of all the exf.ah fwa applied to the fluid contained in the contour
cmslderd and let us apply the theorfm of momentum tOtie motin of tie Portion of the fluid considered. We then
have
(1) Y=Jvdm; X=fti
&einkmalbeinutaken aroundthecontumanddmrermsen@ thefluidw whichflownoutperunitoftimethrough
an ohm-atof th~ contour. Let us desfgnate by # the current functin.
(2) Iim=a*
andalso
(3)

with
(4)

8 d#=*.v&=++g&

U=$ ; t+

By the dednition o~that function, we have

,..

Substituting in the 6rst of the equations 0) the value of dm taken from the equation (2) we obtain
(5) Y=J3V@=J3V(udy-VdZ)
or,

Y-@[u(u@-V&)+u%Z -~~1
-Jllu(a+*) -@(@+@)clly

and,renuukingthat
(6) ?&+@/=dx

~w. ~. IaM8.nl~w AerOmuti.aeMMdlmsen,mm
~W.I&Kntta. Sitam@bdohte &r KMsUehen BaYerisc$IenMdedi der Wimnschdtm, IHimhen, lMOand 1911.
$N. E. Jotiowskf. GwmetrfoheUntereuehunsenfiberda Kutta’wheMhzum&Moscow,1910,1911.See81whfewurse‘fAmudynamlqne,n

P&, l’a16,p. 139.
140
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io notbbg eke than the flow U along an element of our contour, in 8 counterdockwiae dirvctioq i. e., a dfrection EUdI

aawiIltumthe rmisof Xintotbatof Y, weget

(7) r=@dL@dr

aud dnaUy, integrat@ by parta the M term of the mxond member of that relatio% we get

(8) r+ I-pdu] –@P&

which expr~on hokie for any contour and CKInatituteethe drat of the relations we wiehed h get

Apply@ that relation (8) h a mxhxrr along which
V=o; u= V=oonrit.

we edy ace that we have

(9) JW=O;JW%Z=O

and CO~UVntiY ~tiUCW to

(lo) Y=a v?
I being the circnIation rdong the csmtourmnvidered.

Following the same way with the -d of the equations (1), we get

(11) x.@@.J&@@-l&)

.p(llv&uL&-tPl&+@/)

(12)

-p(u’+v9d&jlv(ud&+vdv)

x.pv%i@dr

(13) x=fa~– ~avI–Jmv]

The lad of them qukione conatituee the eecond relation we w%hed.
Applying tbie last relation to a contour along which

v-o; u- Vdknla’t.
we eaafly me that we have
(14) X=o;
all thethreetermeof the eemnd memberof therelation(13) king equal to zero.

Let usnowsbp to note the exactinterpretition of the rektione (10) d (14). An it has been indicated, X aud ~
are.the components of the resnlkutt forcee of all the exterior forma spplied to the volume of fluid contained jn the corL.
tour considered. !l!htm forces are: Firet, the preeeuree of the cylinder on the ffuidj wbiclt are equal aud opprsite to the
pr~es of the fluid on tie cylinder; eecond, the exterior preama on the contour. ~t ne consider a cnnhxrr OVVI’
which V=O; u= ~=&m8t. md which iv limited in one eenee by two stream lines anfEciently dfstant from the cylinder
eo that they are parallel h tie X @ and in the other eenee by two Iinee perpendiculrm to these etream lines. AIong
the stream Linesparallel to the X h we can consider the Bernoulli cmvtant aebeinga&ctfveIycongtan~ and in con.
eequence the prermurep constant and equal to the exterior premmre p., tie velocity ~befng conetant. Under thin ~ndi-
tionthe component along the Yaxie from tie exterior premnree on our contcur will be zero, and Y will reprtwent the
negative of the wnponent of tie presure of tie fluid on tbe imnereed C@inder. The erpreedon (10) consequently
given ue for the numerical value R, of the lift of the fluid on our cylinder ~=t PI But if we emeider s _ tie
which IIowene= our cylinder, there must be come interior km through vfecmity aIong thin stream Line becauee each
immereed body given rise to drag. The Bernoulli constant along euch a atresamline muet n~y d~ aud
when we reach the aide of the cxmtmr, parallel to the Yax@ where the veIocityVhaa again taken iti miginal value,
the preamre there will not take its original value pa, the Bernoulli mmtant having decre.eecd The reIation (14)
conaequentIy exprcsee the fact that the component along the X ariv of the resultant force of the extecior premurceon
our contour iv exactly equal to the drag, and thie EW in the case when the tid= of our contour are moved to inEnity.
IntheIaatcue, theexteriorpressureetendti theirlimitvaluep., butthieianotreached;tithe integral

fPffv
alwamremaineexactlyequalb thedrag. _ KuttaandTouko- whowerethe&etto eetabIi&therelations. (10)and(14),havelimitedthemeelveetoaconsiderationof aperfectfluid. In thatcaee,havingnointeriorl- the
BernoulliconstautIm en invarhblevaIuealongany~ Eneandtherelation(14)-- therqthefactthat
the&g of aniromereedcylinderiezero. Butit ieabsolutelyunn~ h N onreeIveeto a perfectfluid,since
tie theoremof momentumfromwhichthe equationa(IO)sad (14)ares directcomeqnenc~iesppIiceblewhatever
theinteriorforceeactingonthe@d eyatemare.

We~ thusbroughtto thegamralconclwionthat,for any contour aurmunding an immersed cylinder, the fol-
lowing general relations must hold:

(15) ~@-R,=fiu(@-vdz)=~ ~-@’%fz=[&c+’Hdu] -j’W%

(16) jfi-&=f$u(*-*a) =fam-fwI=J6m-[8mr-fa I&?]
which connect the lift and drag of the cylinder, referred ta Eunit kgth of the k@ with the flow around this cylinder.
In the application of these fonnulaq three particular csseahave to be diet@@hed:

—
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lsh The formulaeare applied h the contour of the cyIinder itself. The contour of the cylinder being a ntraaro
line through which we have no flow, we muet simply have

%=J@; -%+4
which is tbe caee considered in clasicd hydrodynamics

9d. The formulaeam applied fa a contour which conaiete of stream lines and normal IirM. (For the definition
of the kt En% see Note II.) In that caae the integralawhich dgure in the second memben of the reIations(15) and
(16) have to be calculated only along the normal lines.

9d. The Kutta caw

R,= –6 VI; R,=$p@/



NOTE If.-Generaffxatfon of the BernonfU1Theorem.

For the debrm.fnstion of the prcsmmx in a fluid, we have the Bernoulli theor~ wh.fch fumiehes m the law of
variation of preeeurealong a etmsaunline and aleo aIong a vortex line. ‘We Sk how that the BernouilIi theorem fe
appHcable to the whoIe fluid, considering the Bernoulli constant u invariable when the fluid motion is irrotational.
But in the general caee, when we go fmm one etream line to mother, the BernouilIi conefant charqp ifa value. WM
ie the law of Va&tion of the BernouilIi conetant in the whoIe fluid M iu the general cam? It ie the mIution of this
fmportaat question which the preeent note gives. We so mrive at the general solution of the problem of the d.kibu-
tion of preamree ins fluid ream.

Let ue cotider a fluid m= in a ekady etate of motion. Let ue coneider in h fluid mace the streamline curve~
aud alm two other families of fundamental curves: thenormal linw, defined by the property that the taugent at each
point h thoee curves coincidee with the principal normal of the etream line paining tbmugh this poin~ and tha i%onnal
lines, delined by the property that tie tangent at each pokrt coincidee with the binormrd to the corresponding stream
line. The etream lime, the normal@ and the binormal linee forma eyetem of triorthogonal curves.

Theee curvee have for equations:
The stream lime:

g=tifd~
Uvw

The normal &

%-&&– W-AZ%
The Mnormal lime:

a—-
A %-%

In these equationa u, U,zoare the components of the veloa~ of the fluid end A, B, Cthe detanninante of the matrix:

For example

Iunw

du dv dw
&xx I

dv
A+wz

du dv dm
exprdom in which ~t~ ~z ~ are tie tital d~ntfv-; for ~ple,

aw
~ u~+.vg+w ~

tie raotion being steady.
Let ue consider a fluid eknent contained in the elementary perallelep@ed, whcse edg- dr, & @ are respectively

directed aIongthe etreamlines, the normal lime and the bfnormal Iinee. On thee curves, we get the folkmingpoeitive
seneew On the stream Hnesj the senee of the velody of the fluid particles;onthenormallime,themm towardthe
cenkrofcurvatureof thecorrespondingstrewnlines;onthebinornwllime,thepositi~esensek choeenmsuchaway
thatthetrirectauguhMmlral (dr, dy, 49) be poeitive.

Let ue apply the d’AIwnbert principle to b fftid element dr, d?, @ and let w coneider for the cake of fiplicity
the fluid aa incompressible ad hsvi.ng no weight (eee fig. 1). The resultant of &e exterior praaure on the fluid element
hm for Cornponen@

-2
dr d, dfi dow dr

-~drh4-@
p being the PramreatthePointconsidered.

ThereeuIttmt of the forcee of inertia applied to that element hae for components:

‘Vtir dtifi idO~ dr
-a

“adrrbd~ -.-h—-
P

. 0 —.–a “
d being the density of the fluid at the point considered; V& ve~ty, and P the *W of the prinupaIcurvature.

14s
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According to tie d’Alembert principle, we muet have:

(1) ~+a~=o

(2) 2 +6; =0

(s) % ‘0
Thie aysternof rdatione repremntathe equation of motion of the fluid refereedto the trforthogonalcurvihear eyetem of
6tream lime, normal IfrKs and bfnormal lirq which can be called the natural curuihear comdinatu of thaJuti or,
shorter, the natwal coordinate of ti.e$uki.

I. The equatfon (1) bringe us directly to the Bemouillf theorem. We have

%+ ’’$%+ ’d:%?+’ fl$-”
aud integrating along a etream lfne, we get

(4) p+ ‘g-c
a relation which conetituk tie BernoufUi theorem, Clbeing the BwnouiIli conetaut.

/

ma 1.
\

Fm. 2.

IL The equation (2) givee ue the distribution of preeeurealong the normal lime. Integmtfng thfe equation along
the normaI Iinw, we get

(5)
J

p+ a ydv=c

Thie M equation ia eueceptibIe of the following important transformation:
Let ue designate by w M,, u~ the wmponents of the vortex and by V,, V,, V@the component of the resultant

veloci~ V along the directions dr, &, d~ at the point considered. Wehave
v,= P, Vp-o; V+@

The relations between the double of the component of the vortex ti and the component of the velocity are gfven by
the detmminants of the matrix

(6) :&;
V’, v, v~

We thus have

(7)

or
avr av

(8) a~.%p.x -~
On the other hand (see 5g, 2).

(9)
av” Vde T
T-X7

CMbeing tbe contingence tingle. Substituting tbie M VUIueofb~ fn the relation (8), for an integration along a normal

fine, we get

(lo) ~. +...
;–tip

.
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and enkatkuting ti last value of d~ in tie cxption (5), we get: -

s

8VdV
(11) P+ 1.2+ -c

Finally, the integral of thie M reIation fe susceptible of the Mowing transformation

3TldF’ 1-

SJ[

~= 0-’’%+0-’+)1 :.
l–~”+ 1–2P”+

=SJtiVdV– .2+8
a VdV-

l-z+d

6P

s

8 VdV
‘— ~“”2

2pw#
md tbe equation (11) takm the form

(12)

s

~+~;=c+ +1

G-

bich relation giv- tbe diatriiution of premurealong thenormal Iin~
we aaily su thatthelastequation has theJm of theBtmouilli equatibn,only theintqnzl IChM&nue in thewon’

member determinesth nanktbn of the Bemouilli mtant uikn teegojvm one atieamhe b anoti alonga normalhh.
If we put

(19) AC=

s

3VdV.7 . .. .

~-1
the equation (M) tiw tie form

(14) p+~-C+AC

Wew~~itfi~t tir~~ti ~~-~o~ati-wW mmtiton*~mltimtid-
eradthevartex uisinthecon@encepIane-fort&e int,cq@ACto beequalti zeroaudtlmwforefor tie BernouilIf
conetant ta be invariable along the normal Ene considered. lt fa cnrklent that us ti zero when c4=0.

Thei.ntegrd ACcanbe wrfttenfntheform

s&iv, e._.,. .
m) AC= _

;B +

and is then sneceptibIe of the following geometrical interpretatfom The denominator of this fntegml repreeenti tie
difference between the inverm of the speed which the fluid particIe would have if rotating with the angalar vehxity
2u@around thecen& afcurvature ofitainstantaneous Pc&tion andtheinverse nfthereding velocity ~of the
particle.

III. The integration of the equation (3) along the bfnormal lines brfnga us directly to the conchaion that along
thoee Hr.lw

(16) p=conet.

tllatia tosay, intheclW30f anonltea@lui&tha Mnormallines araieobars. Itw-ill beeaailyaeen thatitstbcos.eofa
heatJy@% thediahihthn of pwaeure a10q7the binormal linu will be the came as #th4Ju%wer4 immobile.

We&o 888thatfor thecaeeof imotational moth of aJtnii the MnOnnal linas am also the lin.a of umdant Q&Sty,
theBernouiUi theorem being applicable to the whole fluid ream.

The ayntemof rdations for (U), (12), aud (16) fnUy determhw inthegeneral ~the&r&iiution cd~in
a fluid raam in motion This eyshm of relations arriea b to the fcdlowing fmportant ccmeeqnencee, which I will
indicate in general outl.fnea:

I. IthwW&ti&tihhti ofp~a@awfam&i~a~& binonnallina inonitrtohwu the
distribution qfprasure is the tDhola@if muss.

~p~tintiaht m~uenw~titi btti~b~tdo~a~he.
* II. On bothh of a eortezlayer,eventhin, thwem & a ~imnix of preanurewhid canbeof sm”bk nslue.

To convince oureelveacd ivncha ~bilfty, it ie enough to picture a vartex layer in which the quantity

v-2@?n

1670S0-S. Dec. S07, ~lo
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hae a small value ineide the layer, which can happen without T and ti~having excessive values. Then, when trav-
ersing the layer along a normal line, the intqgrd

s
8VdN

w

will have a large value, and, consequently, according to formuta (Ii), the difference of preasum on the two eidea of
the layer can have a sensible value,

The conception of a thin vortex layer maintaining a eenaibledifference of preamrein very important for the under-
standing of many hydmdynamfcal phenomena which take place in red fluids. I ehall take a typical exemple.

I
FIG.&

TM UEconeider a propeller having any numbs of bladw and working in free air at a fixed point, for example.
The rot&tionof the propeller create!Ja well-enough limited fluid stream. Id w follow a etreamline in the eenaeof
the motion of the fluid projected by the propeller (ace f3g.s). When we reach a point such M B cl.iqwsodbeforethe
propeller, the premure p muetbe necessarily l= than th extirior prasure po, because the veloaty in all the time
increasing when we approach the propeller and at points such w Al and A, we have preesureEvery close .to the
pressure p. But when we go through the plan of rotation of the mew, the premureincrmeea and in a pofnt euch u
C disposed directly Mind the propeller, the p~ # ia genemlly greater than the extarior pressure p,. It
would be difficult to conceive the exfetence of different pressuresp’ and p at points C and A,, if it were not for the
vortex layer, which conaequentiy muet constitute the surface of tie fluid etream created by the ecrew rmdwhich h
ca~ble of maintaining differences of pressure. Without the knowledge of the exietance of the vortex layer con-
stituting the surface of the stream created by the propeller the distribution of preemm around the propeller would
be df.tllcultto conceive.

.—,



NOTE 111.-The Equatton or the Ii?etaeentrta Cure.

Ths aerofoil considered ie referred to zmyeystem of X and Yaxee invariably connected with the aerofofl, for ex-
ample, the one reprwented on Fig 1. The air resfhnce R of the aerofoil is reeohed into two components R1= and

R’r along the X and Y’axe% l%- components are comected with the drag R. and lift RY of the aerofoil by the
realationa
(1) R’==R. cm .-~ eina

RIV=R= ein U+RY CcO a~2)

Let ua desigwite by N the moment of R reiative to the origin 0. We have

N-l?. L
The quantities

(3) IP=; RIY; N

fully define the vector R in pcdion end direction and are eometfmea cidled the l’lncke-r’s coordfnatea of Rvecti. In
these coordinat~ the equstion of the direction of R k

(4) x R1v—y2?=-N=0

in fact, the normal form of the wuatfon of the &ection of R ie

cunmquently

Or

x RxV-y R1=-R1=O
and the equation (4) ie thus eatabW.

The rnetacenbic curve ie the envelope of the coneecutfve prsitfons of the afr reaietarme ~ and thus fmtied by
the sym%mof relation9
(5) \ z R’V-V R1=-N-O

— .—
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km whfch we tid

P -P. I

whfch represant tie equatfon of the metacentic curve in pmarnetic form, a being the parameter.
Th=e equaticma can also be writ-

Z $%%) 2[ ;dy!nJNNa’%
R1z~a-

X

aR1’-$qY%m Z&9l%=

-.—. -.

which m be used for the tracing of metacentic curves.



NOTE IP.+he Meehanfem of Flnfd Jfesfetance.z

By TH. T. KkzMlu and H. RUBACE.

,

The residance of a did body moving with a uniform veIocity in an unlimited fluid can be calculated theoretically
onIy in the limiting cases of vmy EIowmotion of d bodies or of very high fluid vismsity. We ~ brought in nuch
cases to a M&tame proportional to the dmt power of the velocity, to the viscwi~ ecmstant, and, for geometrically
@i syeterm, to the Iinear dimensions of the body. To the domain of thie “linear reeietance’’-whfch he mmeed
much Mar@ especially within recent years, on amount of mme important experimental applications-he to be
oppowi the ~Iting domain of comparatively huge veloci~ for which the m-called “velocity square law” hokla
with very good app~-mation. k thiz latter domaiq which embracee nearly W the important Weal application%
the rmfstance fu nearly independent of fluid viecosity, and ia propmtional to the fluid density, the square of the
v&city, and- for geometrimUy similar sy~to a mrface dimension of the body. In this domain of the
“quare law” ia fncludwi the important we of air resiatmce, becauee it iz WY to verify, by the calculation of the
largestdensity vmiatforu which can occur for the speede we meet in aeronautfcaand airecre~ that the air compreasfon
can be neglected without any seneible error. The iniluence of the compression M becomes important for velocitiw
of the order of the veIocity of round. In fact axperimente &w that the air reaistxnce, in a broad rangefrom the d
speeds at which the viscasity playBa role up to the large speede comparable to the velocity of eound, FEproportional
to the eqnare of the velocity with very gmd approxfrnation.s In general, fluid rwktauce depends upon the form and
the orientation of the body in such a complicated way that it ia draordinmily diflkzdt to pmdetmmn“ etheflowtoa
degree tiaent for the evaluation of the reE&tanceof a body of given form, by a procees of pure calculation, as can be
done by aid of the Stokw formula in the case of very ZIOWmotions. We aleJwill not succed in this paper in machfng
KUCha mlutioq but will still make the attempt to give a geneml view of the m.dani.m of $uid retidmw with t?u

limits of thesquarekzm.
Wecanstate the problem of fluid re&tance in the following iwmewhat more exact WBy.
Since the time of the fundamentid corwiderations of O&m.e Rqrnoiiii on tie mdmnfcal efmilitnde of flow

phenomena of fncomprdble v5scouefluids of different density and -W and-under geometrical similitude-for
different sizes of the ayztam considered, it ie hewn that the r&@me phenomenon depends upon a &gle parameter
which is a certain ratio of the abovementioned quantitk ThUSthe fluid rwiatance of a body moving with the uniform
veIoci~ Uin an incomprcmibIe unlimited fluid may be expressed by a formnla of the form 4

(I)

where
()Tt%luf ~

p the fluid density

()
i a deilnfte but arbitrarily chosen linear dffension of the body, and f ~ s functionof the Me variable

R=~. Wewillcall“ReynoMe’parameter”thequantityR which has a zerodimensiom

Theory and experiment show that for very small valu~ of R-that is, for Iow valociti~ m eraalI bodieE, or great
viecwity-the functionf (R) is very needy constant; the resistance coefficient of the Stokes formtda corresponds to the
Limitingeass off(R) for R-O. The sqnareIaw corresponds to the limiting cam of R==. We approach this latter cam
the more nearly the emafler the MW~,mtitb&eltiW=ofR=-,&e flufd can beconsidemdaz
frictions. And we can ask oursehe, to dud Zimding mn&urQtbn diw tha Jew oj Lhe vf&ow@d around a edid

f?tiy tad tchen m Paeatoh limiting case of a pecfixtJuid! This is, accor&g to our tiew, the fundamental point of
the residance problem.

Tha fact that we obtain in this caee s resistance nearly independent of the viemzi~ Constantine amrding
to formula (I)thiscorreqmnds tOtheaquare Iaw--alkmaus h conjecture that in thf6 limiting case the msiztance ia
determined by ilow types uucb as can occur in a perfect fluid.

lTWmtih ti~dmti &~~ti~v. ~~d H. Ea~h PfiMdh@~ Zeitmhrm,”Jemllf,1912 The
authorbMcmddemdRnemmeryto addhemtbh compIetubanslatfo~onacronntofths koportenmofthe newccmcepffoneofTh. r. KdrmLn.

#TimectuaInotaconstitutesa momcompleteespasltionoftwonota ofTh. v. K6ruAnpubllshedin the “IWehrichteuder K@ Oesellseh.
dezWfm,en GottlngeqneontdnlncM hyddynamleal rmeambmnponthe stabtlitgofvortes systemsand the mnddoos eommlng fiuid
rmbtancaobtelnedfromtbelatter. The~bnentshem&cuwd andthemmmmmentsgivenhavespcovkfonalcher6cteGexactMexmmmmts
ammtedti--*mhad~tfonafE RUM

*%tiuPb, wb__*ti O. F6P@ati_ dtieq=hwtiti redetan@mD_tk@”. AW.he%P.40
(also“Jabrboeh der MotorMtsehW-8tndIengeseUmh~ 1911).

4 C?oIVere Lard Raykm PM. kfwa VOL& P, ~ 191L
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It ia now certain that neither the so-called “continuous” potential flow, nor the “diecontinuoue” potential flow

discovered by Ki%rhhof and v. ~ehnholti, can expr- properly this Iimitfng W. CorMfnuouapatential flowdoes not
mum my reaiatance in the caee of uniform motion of a body, as my be ehown directly by aid of the general momentum
theorem; the theory of the diacontinuoua @entM flow, which, in relation to the rwfetance problem hambeen d~
cwod principally by Lord Raykigh,i lade to a reaiatace which ia proportional h the square of the velocity; the cal-
cuhatadvahresdo not, however, agreewith the obaarvedones. And, independent of the fnauffiaent agreementbetween
the numerieal valum, the hypothmis of the “dead water,” which, according to this theory ought to move with the
body, ia in contradiction ta nearly all observation. It b easy to see by aid of the simplest experiroentathat the flow,
when referred ta a syetem of crmdfnatee moiing with the body, ie not atationmy, as aaaumedin thfe theory. Further-
more, in the theory of dfecontinuoue ~tential motion, the suction effect M.d the body ie totsdly miming, while in
the dead water, which extends to infinity, we have everywhere the came preesureaain the undisturbed fluid at a great
dietance from the body. But according to recent meumre.rhentqin many cam the suction effect k of firetimportance
for the mrietance, and in any cam contrfbuti a sensible part of the last.

Thereaeonwhyinaperfect fluid the diacontinuouapotential flow, althoughhydrodynamically possible, ianotrealimd
ia without any doubt the instability of the surkcw of discontinuity, ae hae afready been recognized by V. Hefmholtz
and specially mentioned by Lord Kelvin.~ A mrface of diacontinuit y can be cmwidered ae a vortex sheet; and it can
be ahownin a quite general way that such a,aheetia alwaya unetable. Thie can afeo be observed directly; obmrvation
showe that vortex ahoets have a tendency to roll themeehw up; that ia, we see the concentration amnnd mrne pofnta
of the vortex inteneity of the sheet origimdfy between them. This observation Ieadato the question: Can there exist

‘I=Q=I=”*
—— J+ 4——.—.——.—.—.—.—.

Q- ;-q—+

Fm. I.

akble armngementaof imlated vortex fihunents, which can be condered ae the final product of decomx vortex
ahesta? Thb3question forme the starting point of the following investigations; it will, in fac~ appear that at leaat for
the simplwt case of uniplanar flow, to which we wilf limit ourselves, we will be M to a “flow picture” which in all
reepect.9corrwponde quite well to reality.

TEE INVE9TfGATfON OFSTABILITY,

We wflf invatigate the queetion whether or not two parallel mwa of rectilinear infinite vortices, of equal strength
but of inverse am, can be w ammged that tie whole system, while maintaining an invariable conjuration, will
have a uniform trwdation ahd be stable at the -e time. It is easy to see that there tit two Ends of arrangemenfe
for which two pamllel vortax rows can move with a uniform and rectilinear velocity. The vorticee msy be pkc~
one oppoefte the other (armngement a, fig. I), or the vorticm of one row may be placed opposite the middle pointd
of the epacing of the vortices of the other row (arrangementb). In the case of equalityof spacingof thevorticesfn
both rows, as a consequence of symmetry for the two arrangement Rand b, it appears that each vortex hae the aarne
veloaty in the senee of the X ati, and that the velocity in the mnm of the Y’axieie equal to zero, We have to anawm
the question, which of these two arrangement ie stable?

To ilhtrate firet by a &nple example the method of the invwkigation of stability, we will start with the con.
tideration of an infinite row of indrdte vortic@ disposed at equal dietancea 1and having the intenef~ ~, and will study

.I.

1On the raN6@nceof flnfd$ ?Mh@nMcal snd Phyd-wd Papers,Vol.I, p. zN’.
~Mathemat&alendPhydcalPe.perajVol.IV,p. 21S..Thiepapermntatma detailedcritiqu~ofthe thmryofdfamntinuongmot@i,
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the stability of euchs ayatem. If we designate by rP, YP,the coordinate of the P- fh vortex, and by%, g~ tie
coordimtea of the g-th the velocity impr-ed on the latter vortex by the former is given by the formuke

%’+&&--$_vq),- ‘--- ‘--~ ‘“ --

t
%=-— “ %-% ,.

2r {~-zq)~+(vp-?lq)~

The6e fornnk expram the fact tit each vortex communicate to the other a velotity which ia normal to tie line
jti~ them and iEinversely proportional to their distance apart. Therefore the reeultant velocity of the q- th vortex
due to aII the vorticw ia equal to

~.j’ ~ lb-%

~a~%-%)’+ti’-vq)f
e

@q r
Z

%–%
z--s __~%-%l’+@P-~QJx

P
where p=q iEexchded from the summation. If now the vortices are disturbed from their equflflrium pmition, the
and displacements being ~P,~p, the vortex veIocitierJcan be devehped in te- of th=e qu~titi-, ~d we ~~
be brought to .sa-yetemof differential equatioDE for the dieturbanca tp, ?P,i. e., for emall datiom of the ewtem.

w U6accordingly put

a@pl+tp

Up=np

and, neglecting the mall quantities of higher ordem, we will get

The differential equatiorraw obtained, which are infinite in nnmber, are reduced to two equatiom by the cub.
stitution

&F@% %-W’@Q
‘J!ke two equatione are

d& a 6ilW-~

z
~=vq; ~

p--m

with p#o

. .

The phyeical meaning of thie substitution is ~ to see: we consider a dirtnrbance in which each vortex undergoes
the same motion only with a different phase P. Under such conditions we have tn do titb a mwe disturbance and the
ayatemwilI be calIed etable, when for any value of ~, that @ for my phaee difference between two consecutive vortices.
the amplitude of the disturbance d- not increaae with the tie.

Let w introduce the notation

The foregoing equationa then take the form

~=dP)To

._— .
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Let ue put goand Toproportional to #; we wil[ theu find for each value of q two values for ~ that fe

h= +K(d
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It follow tit the vortex syatam conefdered ia unetable for any perhdfc disturbance, becauee there fn tdways
pmsnt a poeitfve real value of k, that iE, the dfsturbce fEof inwwing amplitude.

Applying thie method in the cam of two vortex rr?wewe will find that the arrangemcmta, that ia, the symmetrical
arrangement,h likewiee unehble, bu~that for the mangement b ibere exiete a value of the ratio h/Z(h ie the distance

between the two rows, 1it the distance between the tices in the row) for which the eyatem in etable.
In both cases Acan be brought to the form

whereA, B, Care functions of the phaeedifference p. The eyatemwill be stableti (CJ-A~) ie p@tive forany value of ~,
For the symmetrical arrangementa, the functiom A, 1?, Care expremed by the formuke:

But for P=* we get

A(=)+-ptgw(+W (%)]

[ ‘ (w@’(%)]
C(d”$ @ T

00 thatthie mwmgement is unstable for any valuea of h and L
For the tmeymmetrical arrangement b we find

.

We see now that C(r)=o, eo that in the place where p=r, A muet aleo be equal to zero, becauee, on account of the
double eign, x takw a pdive real value. This brings UEto the condftion

But

and

so tha$ as the neceawuy condition of stability we 5d the relation

,-

..—.

....—

. ..—

.. .

.

-r- ~

coeh~+

andfortheratio~/1wehd thevalue
lJ/tE0,28.9...,
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For a certain value of the wave length of the disturbance, cormpondfng to p=r, we get A=O, that is, the nyatem
ia in a neutrrdstate. But it can be ehown by calculation that our eyetem iEetable for all other diaturbaucw. T&
unique diaturbauce has to be tested by further inveatigationa. It can, however, be eeen thats zero vaIue for k must
appear, because only one stable configuration exists. If this were not m, we would M for 1/%a tite domain of eta-
biIfty.l

m ‘[maw Pmrrnm.”

The consideration of the queetion of stability has brought u b the result that there exists a particular corl@-
uration of two vortex rowB which is stale. The vorticw of both rows have then such an amangement that the
vorticee of one row are pbmed oppmite the middIe of the interval between the vortk of the other mw, and the
ra~ of the --h between the two rows to the distance 1 between the vorticee of the same row hm the value

The whale .9yatemhas the velocity

p-o

which ean ah be writtan

u=$tgh$

or, frukoducing the value of h/1 found by the stability inveetigatiorq we get

The flow ie given by the complex potedid (P potentia~ # flow function)

where

.-

.-—

—
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—
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By aid of this fornuda we have calculated the corresponding etmwnbn. 09 and have represented them in Fig. 2.
We eee that some of the stmamlm. ea are closed cuma around the vortices. whfIe the othererun between the vcutices-
On the other hand, vie have tried to make vief%lethe flow picture bef&d
a body, e. g., s flat plate or ckcufar cylinder, movd through immobile
water, by aid of Iycopodium powda sifted on the surface of the watar,and
to fix th- pictures photagmphicdly (erpoeure onetenth of a second].

The regufady alternated arrangement of the vorticca can not be
doubted. In most caaes the vortex centers cm also be mfl determined;
comet.inm the picture ie disturbed by mnafl “accidental vcnticee” pr-
oducedfn al.Iprobability by small vibraticmaof the body, which in our pm-
vkional ~erirnenfa could not be avoided. We had a namow tank whose
floor waa formed by a band running on two rol@ and the bedim tested
were simply put on the moving baredand carried byik Ith tobeexpectd

. --
--

.--—. .—. . .~.—, .—. *.- ---

._—-. .—- .:. .-
. ..:.-._

.. ..___ —.——.

~

FIG. 2.

thatby aid of au amangement eepecidy made for the purpose much more regular flow pictures could be obtained,
whiIe in the actual experiments the fiow waa disturbed on the one hand by the vibmtiom of the body and on the
other by the water flow produced by the moving bd itsdf.

The alternatedarrangementof the vortices mtding to the rightand to the M can only be obtained when the .—
vortices periodiceJIy run off M from one aide of the body, then from the other, md eo orq ao that behind the body
there appeare a periodic motimq osciMing frum one &fe to tbe other, but with such a regularity, however, that the
frequency of this mcflletion can be estimated with sufficient exactmm. The periodic character of the motion in the
m-called “vortex wake” has often bem obeerved. !J%u%Bernard z has remdrked that the tIow picture behind a .
narrow obetacIe can be decompmed into voti fickle with altcmwted rotations. AIeo for the ftow of water around
balbon modek the mcillation of the vortcrxfield hae been obeerved.z Finally, v. d. Borne 4 has observed and pho-
~ph~ r~entiy the ~-~ fomtin of vtiw in the = of air flowing around different obstack. The

—

——. ’--—
——
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phenomenon could not be explaimd until no~ according to our a@bility invmtigation the periodic variation appear
aa a natural consequence of the instability of the symmetrical ffow.1

It ia also very integrating to observe how the stable configuration fa eatabliebed. When, for example, a body ia
set in motion from rest (or convermly, the stream ie directed onto the body) some kind of “separation layer” ia tit
formed, which gradually rolle itself up, at first eymmetrictdly on both sidm of the body, till mme mall disturbance
d@roya the symmetry, afta which the periodic motion stark The mciIlatory motion fathen maintained corraponding
to the regular formation of left hand and right hand vortices.”

We have ahm made a eecond mriee of photograph for the caee of a body placed at rest in a uniform stream of
watm. For thiEcaaethe flow picture can be obtafned from Fig. 2 by the mperpoeition of a uniform hotiontal velocity.
We will then eee on the lfnea drawn through the vortex centers perpendicular to the etream direction, come ebbing.
point where tie stream lines intereect and the velocity ie equal to zero. However, in the earne way ae the motion ie
affected by the wibrationaof the experimental body in the w of the motion of a body in the fluid, m in thfa case the
turbulence of the water stream givee riea to dieturbancea.

As ta the quantitative agreement attained by the theory, it muet be noted that our etabflity condition refer to
infinita vortex rowe, m that an qp’cement of the ratio h/f with the.meeaured values ia to be expected only at a certain
dietance from the body. The measurements on the photographs show that the dietance 1between vorticca in a row fe
very regular, ao that 1 may be meamred eatiefactmily, but per contra the dietmce h ie much more vsriable, becauee
the disturbance of the vortices takee place principally in the direction norrrd to the rows, that is, the latter undergo
in the main transverseoecillatione. The beat way to detarmige the mean psitione of the centers of the vortices wordd
be by aid of cinematography, but we can also, without any qmcial ditliculty, find by compariebn the mean direction
of each vortex row directly from photographa. So in the caaeof the photograph of a circrdarcylinder 1.6 cm. in dfameter,
when making meaeurementabeyond the tlret two or three vortex pafm we have found the following mean valuee for
handt

h=l,8 cm,; 1=6.4 crm
So that for the ratio h/1we obtain the value

h/l=M8s

For the flow around a plate of 1.75 cm. breadth we found

h=3 cm.; 1=9.8 cm.
Accordingly

h/l=o.306.

The agreement with the the’oretictdvalue 0.283 ia entirely satfafactory.
For the dratvortexpair behind the bcdy, h/t cornea out eensfbly larger, somewhere nem’l@=O.3fi. But in the fiat

invdigatiou of Kdrrn&n,mentioned at the beginning of this paper, the stability of the vortex eyatemwaefnvdgated
m euch a way that all the vortices with the exception of one pair ‘were maintained at rest and the free vortex pair con-
afdered cwillating in the velocity field of the otbera. Under such aesumptfonait waafound that h/1=1/T arc coahw=
0.36. We therefore think that the conclusion can be drawn, that in the neighborhood of the body, where the vortices
am even more fimited in their displacements, the ratio h/_fis greaterthan 0.283 and approachedratherthe value of 0.S6.

APPLICATION OF THE MOMENTUM TEEOBEM TO TEE OAIJCOLATION OF FLUIO RESISTANCE.

Let m assume that at a certsin distance be&nd the body thqw exiet# a flow differing but elightly from the one
of stable conflgnration which we have establkhed theoretically ~ the foregoing, but that at a dietmce in front of the
body, which ie great in comparimn with tbe aim of the body, the fluid fe at reet-~ it fa quite natural to awme.
We will then be brought by the application of the momentum th~em to a quite definite expr&on for the reaietance
which a body moving with a unfforp velocity in a fluid mna”texperience. practically, by such a calculation for the
uniplanar problem, we will obtain the reeiatanceof a unit of length of m fnfiniti bady pk+cednormally to the plane
of the flow.

We will w a eyatem of cmrdinatw moving tith the came epoed u asthevortexsyetem behind the body. In
thie coordinate ~yetem,accmdirg to onr assumptions, at a suf%cientdietance from the body the vortex motion behind
the body aa well as the.hid eta~ in ~ont of the bcdy will be stegdy, and we wiIl have, when referred to tbie system
of coordinates, a uniform flow of epeed -u in front of the body, but behind the body the velocity components will
be exureeeedbv

where ~ is the real part of the complex ~tentid

sinM-s);
Xw-w+g . . . . . . . . ., .._

ein (~-s) ~

,.
1Thetomthatiserdttedby ● atfck ~idly dkPIaM in &b is fl~ed by &b periodtdty,‘towl&lI“Prof.O. Rnnge baa ahdy” &zwn our

.-r. . .

rbttarrtion.

.-—.,.
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The body itself has, relative ta thie syetern of coordinates, the velocity U–u, where Uis the abeolute velocity of the
body. If we ddgnate by 1 the dfetamcebetvwen the VO* of one row, there must tie placq as a coneqwnce
of the displacement of the body, in the time T=ll( U-u), the formation of a vortex on each side of the body, Vie
will calculate the increment of the momentum. along the X ~is, in this time interval T (that is, between two instants
of time nf identical flow state) and for a part of the flow plane, which we define in the following way (ace& 3). On
the sides the plane portion considered is limited by the two pwallel etraight lines Y=+v; in front and behind, by
two straight lines EConst. &posed at dietances from the body which are great in comparison with the&e of the
body, the Iine behind the body being drawn m as to pass through the point ludf way between two vortices having
inverse rotation. When the boundruy Iin= are eui&iently far frmn the body we can coneider the fluid vekwitiee at
thcae Iines as having the VSIUUindicated in the foregoing.

For a space with the boundarfen indicated above the relation must exht that the momentum imparted to the

body ~oJFidt(where W is the resuhnt fluid re.aistance)is equal to the diEerenM between the momentum contained

in the space considered at the times t=r and t=r+ 2’ and, the sum of the infkm momentum and the time integral
of the pressurealong the boundary lines. If vre thus comiider anexterh forcee the force – Wand the preeeure,which
act on the whole system of fluid and did, they mnet then correspond h the increment of tbe momentum-that is,
to the excees of momentum after the time T 1- the idiom momentum.

—.

-—

.

—

Y

.
Pm. 8.

We will calculate theee momentum parts separately. The excess of momentum after the time T is equal to tbe

difference of the values that the double integrsl p~~ u (z, y) & dy takee at the tinm f=r and t=r+ T. But the
time interval h= been clmen in such a way that the state of flow ie identicd, with the difference that the body has
been &placed through the dfstmce 1=( U–u) T. The double integral reduces thus ta the difference of the integrals
taken over the atripa ABCD and A~B’PW both of breadth 1. For the strip AtW~D’ the Kuid speed csn be taken

-—

equal ta -u for the tip ABCD equal to-u+% ~ that We@

.
If we pess to side boundaries having q=on, we obtsin for ~ the very eimpIe expvision

I,=p~h

which can aleo be obtained directly by the application of the genersl momentum theorem to vartex eydems.
We WiII unite in one single term the insow momentum and the time integral of the preamre, because iR SUCha

way we will be led to more simple results. If we coneider a unfplanar steady fluid motion with the veIocity mm-
ponents u (z, y) and u (z, y) and consider a tied conhmr in the p- the Mow momentum in a unit of time in the

L__

direction of X is exprwaed by the closed integral p~(~dy–~i) where ~, ~ are the velo~ties on the c&itour.” The ‘-”

pressure gives the multant f~d~ along the X ~ but since fors staady tlow the relation
. ..._ ,---

.—
.

must hold, we thus obtain for t.Ilemm of both integrd~ multiplied by T



156 ANNUAL REPORT NATIONAL ADVISORYCOMMITTEEFOR AEROMAUTIOS.

Or, introducing the compIex quantity,
b(p+w) ax&z-iF= ~~}-&

we get
l&J h J@%k)

where lrn ie to be understood ae the compl- part of the integral.
If we put for the contour

;= -U+uf

;=l#

then the terme in u’ will at once be eliminated, and alm the terme in u on account of the equality of the inflow and
outtlow; and there wilI remain only the termsin u~zand u’1$. The latter til give a finite value only for the boundary
line paining through the vortex system (ALJin fig. S). pawing to q=ce, we get

‘=T’’m[JI*)”]
md integrating along AD we get

[f 1
X(ios)

19=‘pIm %X
%(-{00

But

m that, integrating andintroducing the values
f .kr

x(iw)=z -t~ --

x(-Jw)=-$+i#

where u E@U haa been written for+ tgh~h*

Tlmothetoti momentumimpartedtothebodyfa

ro ‘dt”’’h-’’(-)
If for the mean value of %

J
Wdtwe write W (ae the time metm due of the resistance) we wifl obtain with

o
T=l/( U–u) the tinal fornmh

(II)

The fluid rwietance appearahere exprwwwfby the three cbaractaietic mrwtfmtet’, h, 1of tie VOtiX ~fi~tion
(ae u iEexpreesed by the laet). In the deduction of thfe last formula we did not take account of the stability condi-
tions, m that tbie formula appliee to any vaiue of the ratio h/1. If we aesume the vortices in the row to be brought
all close together m that they are uniformly distributed along the mw, but in euch a way that the vortex fnteneity per
unit of length rernainefinite, we thue Pam to the w of contirmoua vortex eheets. In thfe awe M= U, but tW=O—
and u=;, m that the fluid reafetace dfeappeare. The dfwmntinuouepotential flow Qfv. HelmhoItz the doee not

give any reefstmcewhen the depth of the dead water remaine finite, ae can aleo be ehown froLugeneml thoorenm

TEE FORMUIAE FOE FLUID ER91ETMCE.

Let ue now apply to our epcfal caee the general formula we have just found, introducing the rdatione between
~and u, and h and 1 according to the etability cqnditione. For the epeed u we have

—-——.
... . . .—

“-h”‘ “-””
--—,-
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further,
h/7=Oa

mthatweget

r=J~,2as~.u ( U-ZU)+$P]

If we introduce, ae is ordinarily done, the rdstance ccdken- t acmrdfng to the formula

W=#u Pd W

where d ia a &men characterietfc dimension of fhe body, tQwhich we refer the resktmm
by the two ratioe u/Uand l~d in the following way

, we WU obtain #w expreawd

(m [ ()7● Ww= o,799#–o,223 * ;

We have thue obtained the rmid.ante coefEcierit-whfch before could be obmrved only by rmiefmm meeeuremen=
expreaed by two quantities which can be taken directly from the ilow phenomenon, vfx, the ratio

u Velocity of the vortex eyetem
l?-

-.
vdocffr ~ tie bdY

arid
1 Dietanceeapart of the vorticee in one row

T
. .

Reference dnnenmon of de b@Y
. . . .. . ... .. . .,-.

Both quantiti~ correapondfng ta the similitude of the phenomenon, within the limite of vakidity of the equare Iaw
can depend only upon the dimension of the body.

Three two quantitim cm be observed very ewiily experimentally. The ratio l/d mu be taken dirmf.ly from PIIOW
graphs, while the ratio @ Ucsm be found rosily by counting the number of vorticee formed. If we dmignate by T the
time between two identical tlow statee we can then introduce the quantity 10= lTT, which is the distance the body
movee in the period T. ThiEquantity mud be independent of vekity for the mme body, and the ratio Z/l. for &@ar
bodies must eIaobe independent of the dimensionEof the body but determined by the ebape of the body. Remember-
ing that T=l/( U--u), we then find between u/ Uand ~lo the simple relation

By mme provisional nmaaummenta we have proved the similitude rule and dkwarde cakuletkxi the rmietsmce
coet?icient for a tlat pIate and a cyIinder dispmed normaI h the _ for the purpose of meing ff the calmdatd valuea
agreed with the air meietaneemmsureanents, at lead in order of magnitude.

.—

Our meesurementawtre made &et on two platw of width 1.75 end 2.70 cm. and 25 cm. length, and vie have mmu-
ured the period 2’ and calmdatcd the quantity 10=UT for two different velocith. We have ueed a chronograph

for time mmeuremente aud the period wee obem-ved for eech vortex row independently. Thue wee foand for the
narrowerpIate

IT=1O.OCllJ/8C4 lfis da%

f&mI~ W’ 0.W5iec
UI’=12.6 cm 12.1 cm

for the wider plate
U=9.6 cm@ 16.5cm/w
T=l.Q9 WC. La w-c.

UT=19S MC. 18.6 W.
Mean value UTd8.8 cm

The ratioof the plate width ia eqnaI to

*1.64
.

and the ratio of the quantities &UT ie eqnaI h
18. 8X1.52
UizTi

So that the similitude rule M in any case confirmed.
A circular cylinder of 1.5 cm. diameter wee elm teaated at two EPee&. We found the valuea

.

27=11.0C??@c 16.8 cm@
T=O.66 & 0.48 M&

UT=7.9 cm 7.5 cm

Wan value UT=T.4 cm
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Knowing the valuea of l.= UT we cau calculati for the plate and the cylinder the speed ratio @7. Thue,

for the pfata u/ U=O.20.
for the cylinder u/ U-O.14

and with the values of 1 indicated before we have

for the pIate l/d=6.6
for the cylinder l/d=4.s

where d is the plate width or cylinder diameter. We the find the rtitance mefflcienta

for the plate #W=0.80
for the cyLinder#w=0.46

The mistance meaeurem ente of FoppP have given for a plate with an aepect ratio of 10:1 the reabtance coefllcfent
$.=0.72 ~d tie Eiff~a maremmfa, for rmaspect ratio of 60:1; that ie, for a nearly plane flow, the vrdue #w=0.78.
Further,Foppl haafound for a long circular cyLinder~w=0.45, eo that the agreement between the calculated and meae-
umd rwietance meftlcienta must be considered ae fully eatiefactory.

The theoretical imwtigatione here developed ought to be extended and completed in two dfmctions. l?ire~
we have Limitedouraelveato the uniplanar problem; that ie, b the lfmiting case of a body of great length in the direc.
tion normal to the flow. It ie to be expected that by the investigation of stable vortex con&umtione in space we wifl
aho be brought to a bettar rmderetandingof the mechaniem of fluid rwdetartce. However, the problem ie rendered
dfflictdt by the fact that the tranelatfon veloaty of curved vortex filamente ie not any longer independent of the b
of the vortex aoction, becauee to an inilnftely thin filament would correspond an infinitely great velocity. Never-
theless, it muet not be mnaiderd that the exteneion of the theory to the we of epaca would bring uneurmourrtable
diflhdtiea. f

Muchmoredi5cuItappearstheextemrionof tie theoryin anotherdirection,whichreallywouldfiretleadto a
completiundemandingof thetheoryof fluidreaietmce,nemeIy,the evaluationby purecalculation of the ratim
l/d and u/U, which we have found from flow observation, and which determine the fluid rwrietance. Thfe problem
can not be aolvtd witbout investigation of th proc~ of vortex formation. b apparent contradiction ie brought out
by the fact that we have ueed only the theoremeeetabliehedfor perfect fluide, which in euch a fluid (frictionkm fluid)
no vortices w be formed. This contradiction ie explained by the fact that we can everywhere neglect friction except
at the eurfaceof the body. It can be ehown that the friction forcee tend to zero when the friction coet?icientdecreaeee,
but the vortex inteneity remainEfinite. If we the coneider the perfect fluid ae the limiting case of a viecoua fluid,
then the law of vortex formation muet be Iirni@d by the condition that only three fluid pticlee can receive rotation
which have been in contact with the eurface of the body.

This idea appear ffret,in a perfectly cIear way, in the Prandtl theory of fluids bating small friction. The Praudtl
theory imwtigatm those phenomena which take place in a Layerat the surface of the bwly, aud the way in which the
separation of the flow from the eurface of the body occurs. It we could eucceed in bringing into relation thee fnvee-
tigatione on the method of separation of the stream fmm the walI with the calculation of stabIe conjuration of vortex
filme formed in any way whatever, aa ha been explained in the foregoing pagem,then this would evidently mean
great progmse. Whether or not thie would meet with great diflicuh.ioa can not at the present time be statwi.

_—-.
ISeatheworkof O. Foppl already mentfcmrd.

..—

1G. El&@ ‘~Ia Rmhtanm da lJAtret IJAvistbq” p. 47,%% 1910.


